PLURISIGNED HERMITIAN METRICS

被引:2
作者
Angella, Daniele [1 ]
Guedj, Vincent [2 ]
Lu, Chinh H. [3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67 A, I-50134 Florence, Italy
[2] Univ Toulouse, Inst Math Toulouse, 118 Route Narbonne, F-31400 Toulouse, France
[3] Univ Angers, CNRS, LAREMA, SFR MATHST, F-49000 Angers, France
关键词
Monge-Amp?re volumes; hermitian metrics; LEFT INVARIANT METRICS; COMPLEX STRUCTURES; STRONG KAHLER; EXISTENCE; TORSION; SOLVMANIFOLDS; NILMANIFOLDS; MANIFOLDS; VOLUME;
D O I
10.1090/tran/8916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, w) be a compact hermitian manifold of dimension n. We study the asymptotic behavior of Monge-Ampere volumes fX(w + ddc phi)n, when w + ddc phi varies in the set of hermitian forms that are ddc-cohomologous to w. We show that these Monge-Ampere volumes are uniformly bounded if w is "strongly pluripositive", and that they are uniformly positive if w is "strongly plurinegative". This motivates the study of the existence of such plurisigned hermitian metrics.We analyze several classes of examples (complex parallelisable manifolds, twistor spaces, Vaisman manifolds) admitting such metrics, showing that they cannot coexist. We take a close look at 6-dimensional nilmanifolds which ad -mit a left-invariant complex structure, showing that each of them admit a plurisigned hermitian metric, while only few of them admit a pluriclosed met-ric. We also study 6-dimensional solvmanifolds with trivial canonical bundle.
引用
收藏
页码:4631 / 4659
页数:29
相关论文
共 75 条
  • [1] ABBENA E, 1986, B UNIONE MAT ITAL, V5A, P371
  • [2] Vanishing theorems on Hermitian manifolds
    Alexandrov, B
    Ivanov, S
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (03) : 251 - 265
  • [3] Classification of abelian complex structures on 6-dimensional Lie algebras
    Andrada, A.
    Barberis, M. L.
    Dotti, I.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 : 232 - 255
  • [4] Angella D., COMMUN ANAL GEOM
  • [5] Angella D., ARXIV
  • [6] Complex structures of splitting type
    Angella, Daniele
    Otal, Antonio
    Ugarte, Luis
    Villacampa, Raquel
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) : 1309 - 1350
  • [7] Bott-Chern cohomology of solvmanifolds
    Angella, Daniele
    Kasuya, Hisashi
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 52 (04) : 363 - 411
  • [8] [Anonymous], 2016, Ann. Fac. Sci. Toulouse Math., V25, P91
  • [9] SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY
    ATIYAH, MF
    HITCHIN, NJ
    SINGER, IM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711): : 425 - 461
  • [10] Barberis ML, 2009, MATH RES LETT, V16, P331