Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches

被引:21
作者
Agajanian, Steve [1 ]
Alshahrani, Mohammed [1 ]
Bai, Fang [2 ]
Tao, Peng [3 ]
Verkhivker, Gennady M. [1 ,4 ]
机构
[1] Chapman Univ, Schmid Coll Sci & Technol, Keck Ctr Sci & Engn, Grad Program Computat & Data Sci, Orange, CA 92866 USA
[2] Shanghai Tech Univ, Shanghai Inst Adv Immunochem Studies, Sch Life Sci & Technol & Informat Sci & Technol, Shanghai 201210, Peoples R China
[3] Southern Methodist Univ, Ctr Res Comp, Ctr Drug Discovery Design & Delivery CD4, Dept Chem, Dallas, TX 75205 USA
[4] Chapman Univ Sch Pharm, Dept Biomed & Pharmaceut Sci, Irvine, CA 92618 USA
基金
美国国家卫生研究院;
关键词
biology drug allosteric mechanisms; artificial intelligence; protein allostery; first principles; high-throughput deep mutational scanning; allosteric drug design; machine learning; structural prediction methods; SARS-CoV-2; SARS-COV-2 SPIKE PROTEIN; MARKOV STATE MODELS; COVARIANCE ANALYSIS; SIGNAL PROPAGATION; DYNAMICS; BINDING; SITES; RECEPTOR; COMMUNICATION; LANDSCAPES;
D O I
10.1021/acs.jcim.2c01634
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
引用
收藏
页码:1413 / 1428
页数:16
相关论文
共 161 条
[1]   Predicting long term cooperativity and specific modulators of receptor interactions in human transferrin from dynamics within a single microstate [J].
Abdizadeh, Haleh ;
Atilgan, Canan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (11) :7916-7926
[2]   F508del disturbs the dynamics of the nucleotide binding domains of CFTR before and after ATP hydrolysis [J].
Abreu, Barbara ;
Lopes, Emanuel F. ;
Oliveira, A. S. F. ;
Soares, Claudio M. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2020, 88 (01) :113-126
[3]   A structural biology community assessment of AlphaFold2 applications [J].
Akdel, Mehmet ;
Pires, Douglas E., V ;
Porta Pardo, Eduard ;
Janes, Jurgen ;
Zalevsky, Arthur O. ;
Meszaros, Balint ;
Bryant, Patrick ;
Good, Lydia L. ;
Laskowski, Roman A. ;
Pozzati, Gabriele ;
Shenoy, Aditi ;
Zhu, Wensi ;
Kundrotas, Petras ;
Serra, Victoria Ruiz ;
Rodrigues, Carlos H. M. ;
Dunham, Alistair S. ;
Burke, David ;
Borkakoti, Neera ;
Velankar, Sameer ;
Frost, Adam ;
Basquin, Jerome ;
Lindorff-Larsen, Kresten ;
Bateman, Alex ;
Kajava, Andrey, V ;
Valencia, Alfonso ;
Ovchinnikov, Sergey ;
Durairaj, Janani ;
Ascher, David B. ;
Thornton, Janet M. ;
Davey, Norman E. ;
Stein, Amelie ;
Elofsson, Arne ;
Croll, Tristan, I ;
Beltrao, Pedro .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (11) :1056-+
[4]   Allosteric pluripotency: challenges and opportunities [J].
Akimoto, Madoka ;
Pomier, Karla Martinez ;
VanSchouwen, Bryan ;
Byun, Jung Ah ;
Khamina, Mariia ;
Melacini, Giuseppe .
BIOCHEMICAL JOURNAL, 2022, 479 (07) :825-838
[5]  
Anishchenko I., Nature
[6]  
[Anonymous], 2015, P NATL ACAD SCI US, V112, P2734
[7]   NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ [J].
Aoto, Phillip C. ;
Martin, Bryan T. ;
Wright, Peter E. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Manipulation of Conformational Change in Proteins by Single-Residue Perturbations [J].
Atilgan, C. ;
Gerek, Z. N. ;
Ozkan, S. B. ;
Atilgan, A. R. .
BIOPHYSICAL JOURNAL, 2010, 99 (03) :933-943
[9]   Perturbation-Response Scanning Reveals Ligand Entry-Exit Mechanisms of Ferric Binding Protein [J].
Atilgan, Canan ;
Atilgan, Ali Rana .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (10)
[10]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+