"fhircrackr": An R Package Unlocking Fast Healthcare Interoperability Resources for Statistical Analysis

被引:6
作者
Palm, Julia [1 ,4 ]
Meineke, Frank A. [2 ]
Przybilla, Jens [2 ,3 ]
Peschel, Thomas [2 ]
机构
[1] Jena Univ Hosp, Inst Med Stat Comp & Data Sci, Jena, Thuringia, Germany
[2] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany
[3] Univ Leipzig, Clin Trial Ctr Leipzig, Leipzig, Germany
[4] Jena Univ Hosp, Inst Med Stat Comp & Data Sci, Bachstr 18, D-07743 Jena, Germany
来源
APPLIED CLINICAL INFORMATICS | 2023年 / 14卷 / 01期
关键词
Fast Healthcare Interoperability Resources; electronic health records; health information interoperability; data analysis; FHIR;
D O I
10.1055/s-0042-1760436
中图分类号
R-058 [];
学科分类号
摘要
Background The growing interest in the secondary use of electronic health record (EHR) data has increased the number of new data integration and data sharing infrastructures. The present work has been developed in the context of the German Medical Informatics Initiative, where 29 university hospitals agreed to the usage of the Health Level Seven Fast Healthcare Interoperability Resources (FHIR) standard for their newly established data integration centers. This standard is optimized to describe and exchange medical data but less suitable for standard statistical analysis which mostly requires tabular data formats.Objectives The objective of this work is to establish a tool that makes FHIR data accessible for standard statistical analysis by providing means to retrieve and transform data from a FHIR server. The tool should be implemented in a programming environment known to most data analysts and offer functions with variable degrees of flexibility and automation catering to users with different levels of FHIR expertise.Methods We propose the fhircrackr framework, which allows downloading and flattening FHIR resources for data analysis. The framework supports different download and authentication protocols and gives the user full control over the data that is extracted from the FHIR resources and transformed into tables. We implemented it using the programming language R [1] and published it under the GPL-3 open source license.Results The framework was successfully applied to both publicly available test data and real-world data from several ongoing studies. While the processing of larger real-world data sets puts a considerable burden on computation time and memory consumption, those challenges can be attenuated with a number of suitable measures like parallelization and temporary storage mechanisms.Conclusion The fhircrackr R package provides an open source solution within an environment that is familiar to most data scientists and helps overcome the practical challenges that still hamper the usage of EHR data for research.
引用
收藏
页码:54 / 64
页数:11
相关论文
共 40 条
[1]  
[Anonymous], WEATHER BASED STROKE
[2]  
[Anonymous], 2016, WORLD WIDE WEB CONSO
[3]  
[Anonymous], NT PROBNP ALS MARKER
[4]  
[Anonymous], LEIPZIG HLTH ATLAS F
[5]  
[Anonymous], HL7 FHIR RESOURCE PA
[6]  
Baldini Giulia, 2022, Zenodo, DOI 10.5281/ZENODO.7025227
[7]  
Bender D, 2013, COMP MED SY, P326, DOI 10.1109/CBMS.2013.6627810
[8]   International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium [J].
Brat, Gabriel A. ;
Weber, Griffin M. ;
Gehlenborg, Nils ;
Avillach, Paul ;
Palmer, Nathan P. ;
Chiovato, Luca ;
Cimino, James ;
Waitman, Lemuel R. ;
Omenn, Gilbert S. ;
Malovini, Alberto ;
Moore, Jason H. ;
Beaulieu-Jones, Brett K. ;
Tibollo, Valentina ;
Murphy, Shawn N. ;
L'Yi, Sehi ;
Keller, Mark S. ;
Bellazzi, Riccardo ;
Hanauer, David A. ;
Serret-Larmande, Arnaud ;
Gutierrez-Sacristan, Alba ;
Holmes, John J. ;
Bell, Douglas S. ;
Mandl, Kenneth D. ;
Follett, Robert W. ;
Klann, Jeffrey G. ;
Murad, Douglas A. ;
Scudeller, Luigia ;
Bucalo, Mauro ;
Kirchoff, Katie ;
Craig, Jean ;
Obeid, Jihad ;
Jouhet, Vianney ;
Griffier, Romain ;
Cossin, Sebastien ;
Moal, Bertrand ;
Patel, Lav P. ;
Bellasi, Antonio ;
Prokosch, Hans U. ;
Kraska, Detlef ;
Sliz, Piotr ;
Tan, Amelia L. M. ;
Ngiam, Kee Yuan ;
Zambelli, Alberto ;
Mowery, Danielle L. ;
Schiver, Emily ;
Devkota, Batsal ;
Bradford, Robert L. ;
Daniar, Mohamad ;
Daniel, Christel ;
Benoit, Vincent .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[9]  
Cerner, BUNS FHIR DAT AP SPA
[10]  
CODD EF, 1970, COMMUN ACM, V13, P377, DOI 10.1145/357980.358007