Ill-Posedness Issue on a Multidimensional Chemotaxis Equations in the Critical Besov Spaces

被引:4
作者
Li, Jinlu [1 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[3] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multidimensional chemotaxis equations; Ill-posedness; Besov spaces; NAVIER-STOKES EQUATIONS; HYPERBOLIC-PARABOLIC SYSTEM; GLOBAL WELL-POSEDNESS; NONLINEAR DIFFUSION; WEAK SOLUTIONS; MODEL; STABILIZATION; BOUNDEDNESS; STABILITY; EXISTENCE;
D O I
10.1007/s12220-022-01140-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to solving the open question left in [Nie, Yuan: Nonlinear Anal 196 (2020); J. Math. Anal. Appl 505 (2022) and Xiao, Fei: J. Math. Anal. Appl 514 (2022)]. We prove that a multidimensional chemotaxis system is ill-posedness in B-2d(-3/2), r x ( ?B-2d(-1/2), r) d when 1 <= r < d due to the lack of continuity of the solution.
引用
收藏
页数:22
相关论文
共 50 条
[21]   Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces [J].
Fei, Xiang ;
Yu, Yanghai ;
Fei, Mingwen .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02)
[22]   Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces [J].
Xiang Fei ;
Yanghai Yu ;
Mingwen Fei .
Zeitschrift für angewandte Mathematik und Physik, 2023, 74
[23]   Ill-Posedness of a Three-Component Novikov System in Besov Spaces [J].
Yu, Shengqi ;
Zhou, Lin .
MATHEMATICS, 2024, 12 (09)
[24]   Well-posedness and ill-posedness of the stationary Navier-Stokes equations in toroidal Besov spaces [J].
Tsurumi, Hiroyuki .
NONLINEARITY, 2019, 32 (10) :3798-3819
[25]   Ill-posedness for the gCH-mCH equation in Besov spaces [J].
Yu, Yanghai ;
Wang, Hui .
MONATSHEFTE FUR MATHEMATIK, 2025, 206 (02) :471-487
[26]   STRONG ILL-POSEDNESS FOR SQG IN CRITICAL SOBOLEV SPACES [J].
Jeong, In-Jee ;
Kim, Junha .
ANALYSIS & PDE, 2024, 17 (01) :133-170
[27]   Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa-Holm equation in critical Besov spaces [J].
Meng, Zhiying ;
Yin, Zhaoyang .
MONATSHEFTE FUR MATHEMATIK, 2023, 200 (04) :933-954
[28]   Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type [J].
Iwabuchi, Tsukasa ;
Takada, Ryo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (05) :1321-1337
[29]   The well-posedness, ill-posedness and non-uniform dependence on initial data for the Fornberg-Whitham equation in Besov spaces [J].
Guo, Yingying .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 70
[30]   Ill-posedness of the Camassa-Holm and related equations in the critical space [J].
Guo, Zihua ;
Liu, Xingxing ;
Molinet, Luc ;
Yin, Zhaoyang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) :1698-1707