Ill-Posedness Issue on a Multidimensional Chemotaxis Equations in the Critical Besov Spaces

被引:4
|
作者
Li, Jinlu [1 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[3] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multidimensional chemotaxis equations; Ill-posedness; Besov spaces; NAVIER-STOKES EQUATIONS; HYPERBOLIC-PARABOLIC SYSTEM; GLOBAL WELL-POSEDNESS; NONLINEAR DIFFUSION; WEAK SOLUTIONS; MODEL; STABILIZATION; BOUNDEDNESS; STABILITY; EXISTENCE;
D O I
10.1007/s12220-022-01140-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to solving the open question left in [Nie, Yuan: Nonlinear Anal 196 (2020); J. Math. Anal. Appl 505 (2022) and Xiao, Fei: J. Math. Anal. Appl 514 (2022)]. We prove that a multidimensional chemotaxis system is ill-posedness in B-2d(-3/2), r x ( ?B-2d(-1/2), r) d when 1 <= r < d due to the lack of continuity of the solution.
引用
收藏
页数:22
相关论文
共 50 条