Global well-posedness of perturbed Navier-Stokes system around Landau solutions

被引:2
作者
Zhang, Jingjing [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
HOMOGENEOUS SOLUTIONS; ISOLATED SINGULARITIES; EQUATIONS; STABILITY; REGULARITY; SPACES;
D O I
10.1063/5.0087462
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the perturbed Navier-Stokes equations around the Landau solution and investigate the global well-posedness result s of the perturbed system with the small initial data in the X-1 space, where X-1 = {f epsilon D'(R-3) : integral(3)(R) |xi|(-1)| (f) over cap |d xi < infinity}.
引用
收藏
页数:7
相关论文
共 30 条
[1]   L2-DECAY FOR NAVIER-STOKES FLOWS IN UNBOUNDED-DOMAINS, WITH APPLICATION TO EXTERIOR STATIONARY FLOWS [J].
BORCHERS, W ;
MIYAKAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 118 (03) :273-295
[2]   ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1995, 174 (02) :311-382
[3]   Smooth or singular solutions to the Navier-Stokes system [J].
Cannone, M ;
Karch, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (02) :247-274
[4]  
Cannone M., 1994, SEM EQ DER PART 1993
[5]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[6]  
Ferrari AB, 1998, COMMUN PART DIFF EQ, V23, P1
[7]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[8]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[9]  
Gang Tian, 1998, TOPOL METHOD NONL AN, V11, P135
[10]   NAVIER-STOKES FLOW IN R3 WITH MEASURES AS INITIAL VORTICITY AND MORREY SPACES [J].
GIGA, Y ;
MIYAKAWA, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (05) :577-618