ELLIPTIC COHOMOLOGY IS UNIQUE UP TO HOMOTOPY

被引:4
作者
Davies, J. M. [1 ]
机构
[1] Univ Bonn, Endenicher Alle 60, D-53115 Bonn, Germany
关键词
elliptic cohomology; topological modular forms; stable homotopy theory; chromatic homotopy theory;
D O I
10.1017/S1446788722000209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Homotopy theory folklore tells us that the sheaf defining the cohomology theory Tmf of topological modular forms is unique up to homotopy. Here we provide a proof of this fact, although we claim no originality for the statement. This retroactively reconciles all previous constructions of Tmf.
引用
收藏
页码:99 / 118
页数:20
相关论文
共 31 条
[1]  
Behrens H., 2020, HDB HOMOTOPY THEORY, P221
[2]   On the homotopy of Q(3) and Q(5) at the prime 2 [J].
Behrens, Mark ;
Ormsby, Kyle M. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (05) :2459-2534
[3]  
Davies J. M., 2022, DISSERTATION
[4]  
Davies J. M., 2022, STABLE OPERATI UNPUB
[5]  
Davies J. M., 2021, PREPRINT
[6]  
Davies J. M., 2022, PREPRINT
[7]  
Deligne P., 1973, Lecture Notes in Math., V349, P143
[8]  
Douglas C.L., 2014, TOPOLOGICAL MODULAR, V201
[9]   HOMOTOPY COMMUTATIVE DIAGRAMS AND THEIR REALIZATIONS [J].
DWYER, WG ;
KAN, DM ;
SMITH, JH .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 57 (01) :5-24
[10]  
Gepner D., 2020, PREPRINT