Automated analysis of low-field brain MRI in cerebral malaria

被引:4
|
作者
Tu, Danni [1 ]
Goyal, Manu S. [2 ]
Dworkin, Jordan D. [3 ]
Kampondeni, Samuel [4 ]
Vidal, Lorenna [5 ]
Biondo-Savin, Eric [6 ]
Juvvadi, Sandeep [7 ]
Raghavan, Prashant [8 ]
Nicholas, Jennifer [9 ]
Chetcuti, Karen [10 ]
Clark, Kelly [1 ]
Robert-Fitzgerald, Timothy [1 ]
Satterthwaite, Theodore D. [11 ]
Yushkevich, Paul [12 ]
Davatzikos, Christos [12 ]
Erus, Guray [13 ]
Tustison, Nicholas J. [14 ]
Postels, Douglas G. [15 ]
Taylor, Terrie E. [4 ,16 ]
Small, Dylan S. [17 ]
Shinohara, Russell T. [1 ,13 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Penn Stat Imaging & Visualizat Endeavor PennSIVE, 217 Blockley Hall 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO USA
[3] Columbia Univ, Dept Psychiat, Irving Med Ctr, New York, NY USA
[4] Kamuzu Univ Hlth Sci, Blantyre Malaria Project, Blantyre, Southern Region, Malawi
[5] Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
[6] Michigan State Univ, Dept Radiol, E Lansing, MI 48824 USA
[7] Tenet Diagnost, Hyderabad, India
[8] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA
[10] Kamuzu Univ Hlth Sci, Dept Paediat & Child Hlth, Blantyre, Southern Region, Malawi
[11] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[12] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Radiol, Ctr Biomed Image Comp & Anal CBICA, Philadelphia, PA 19104 USA
[14] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[15] George Washington Univ, Childrens Natl Med Ctr, Div Neurol, Washington, DC USA
[16] Michigan State Univ, Coll Osteopath Med, E Lansing, MI 48824 USA
[17] Univ Penn, Dept Stat, 417 Acad Res Bldg 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
brain segmentation; data integration; Markov random field; MRI; IMAGE SEGMENTATION; MODEL; STRATEGIES; CHILDREN; COHORT;
D O I
10.1111/biom.13708
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.
引用
收藏
页码:2417 / 2429
页数:13
相关论文
共 50 条
  • [41] MRI quality control for low-field MR-IGRT systems: Lessons learned
    Gach, H. Michael
    Curcuru, Austen N.
    Wittland, Erin J.
    Maraghechi, Borna
    Cai, Bin
    Mutic, Sasa
    Green, Olga L.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2019, 20 (10): : 53 - 66
  • [42] Optimization of the image acquisition procedure in low-field MRI for non-destructive analysis of loin using predictive models
    Caballero, Daniel
    Perez-Palacios, Trinidad
    Caro, Andres
    Avila, Mar
    Antequera, Teresa
    PEERJ COMPUTER SCIENCE, 2021,
  • [43] Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion
    Mulder, Inge A.
    Khmelinskii, Artem
    Dzyubachyk, Oleh
    de Jong, Sebastiaan
    Rieff, Nathalie
    Wermer, MariekeJ. H.
    Hoehn, Mathias
    Lelieveldt, Boudewijn P. F.
    van den Maagdenberg, Arn M. J. M.
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [44] Comparative evaluation of the ventricles in the Yorkshire Terrier and the German Shepherd dog using low-field MRI
    Esteve-Ratsch, B
    Kneissl, S
    Gabler, C
    VETERINARY RADIOLOGY & ULTRASOUND, 2001, 42 (05) : 410 - 413
  • [45] In Vivo Magic Angle Magnetic Resonance Imaging for Cell Tracking in Equine Low-Field MRI
    Horstmeier, Carolin
    Ahrberg, Annette B.
    Berner, Dagmar
    Burk, Janina
    Gittel, Claudia
    Hillmann, Aline
    Offhaus, Julia
    Brehm, Walter
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [46] MRI of the lung gas-space at very low-field using hyperpolarized noble gases
    Venkatesh, AK
    Zhang, AX
    Mansour, J
    Kubatina, L
    Oh, CH
    Blasche, G
    Ünlü, MS
    Balamore, D
    Jolesz, FA
    Goldberg, BB
    Albert, MS
    MAGNETIC RESONANCE IMAGING, 2003, 21 (07) : 773 - 776
  • [47] Overcoming metallic artefacts from orthopaedic wrist volar plating on a low-field MRI scanner
    Stecco, Alessandro
    Arioli, Roberto
    Buemi, Francesco
    Parziale, Giuseppe
    Trisoglio, Alessandra
    Soligo, Eleonora
    Cerini, Paolo
    Leigheb, Massimiliano
    Brambilla, Marco
    Di Nardo, Gerardo
    Guzzardi, Giuseppe
    Carriero, Alessandro
    RADIOLOGIA MEDICA, 2019, 124 (05): : 392 - 399
  • [48] Low-field MRI of the ankle joint-first experience in the pediatric age group.
    Herber, S
    Kreitner, KF
    Kalden, P
    Löw, R
    Berger, S
    Thelen, M
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2000, 172 (03): : 267 - 273
  • [49] Utility of the Polestar N30 low-field MRI system for resecting non-enhancing intra-axial brain lesions
    Ungar, Lior
    Zibly, Zion
    Wohl, Anton
    Harel, Ran
    Hadani, Moshe
    Attia, Moshe
    Spiegelmann, Roberto
    Feldman, Zeev
    Zaubermann, Jacob
    Knoller, Nachshon
    Cohen, Zvi R.
    NEUROLOGIA I NEUROCHIRURGIA POLSKA, 2021, 55 (02) : 202 - 211
  • [50] Overcoming metallic artefacts from orthopaedic wrist volar plating on a low-field MRI scanner
    Alessandro Stecco
    Roberto Arioli
    Francesco Buemi
    Giuseppe Parziale
    Alessandra Trisoglio
    Eleonora Soligo
    Paolo Cerini
    Massimiliano Leigheb
    Marco Brambilla
    Gerardo Di Nardo
    Giuseppe Guzzardi
    Alessandro Carriero
    La radiologia medica, 2019, 124 : 392 - 399