Automated analysis of low-field brain MRI in cerebral malaria

被引:4
|
作者
Tu, Danni [1 ]
Goyal, Manu S. [2 ]
Dworkin, Jordan D. [3 ]
Kampondeni, Samuel [4 ]
Vidal, Lorenna [5 ]
Biondo-Savin, Eric [6 ]
Juvvadi, Sandeep [7 ]
Raghavan, Prashant [8 ]
Nicholas, Jennifer [9 ]
Chetcuti, Karen [10 ]
Clark, Kelly [1 ]
Robert-Fitzgerald, Timothy [1 ]
Satterthwaite, Theodore D. [11 ]
Yushkevich, Paul [12 ]
Davatzikos, Christos [12 ]
Erus, Guray [13 ]
Tustison, Nicholas J. [14 ]
Postels, Douglas G. [15 ]
Taylor, Terrie E. [4 ,16 ]
Small, Dylan S. [17 ]
Shinohara, Russell T. [1 ,13 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Penn Stat Imaging & Visualizat Endeavor PennSIVE, 217 Blockley Hall 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO USA
[3] Columbia Univ, Dept Psychiat, Irving Med Ctr, New York, NY USA
[4] Kamuzu Univ Hlth Sci, Blantyre Malaria Project, Blantyre, Southern Region, Malawi
[5] Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
[6] Michigan State Univ, Dept Radiol, E Lansing, MI 48824 USA
[7] Tenet Diagnost, Hyderabad, India
[8] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA
[10] Kamuzu Univ Hlth Sci, Dept Paediat & Child Hlth, Blantyre, Southern Region, Malawi
[11] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[12] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Radiol, Ctr Biomed Image Comp & Anal CBICA, Philadelphia, PA 19104 USA
[14] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[15] George Washington Univ, Childrens Natl Med Ctr, Div Neurol, Washington, DC USA
[16] Michigan State Univ, Coll Osteopath Med, E Lansing, MI 48824 USA
[17] Univ Penn, Dept Stat, 417 Acad Res Bldg 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
brain segmentation; data integration; Markov random field; MRI; IMAGE SEGMENTATION; MODEL; STRATEGIES; CHILDREN; COHORT;
D O I
10.1111/biom.13708
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.
引用
收藏
页码:2417 / 2429
页数:13
相关论文
共 50 条
  • [31] Low-Field MRI for Dental Imaging in Pediatric Patients With Supernumerary and Ectopic Teeth
    Willershausen, Ines
    Evangeliou, Stefania
    Fautz, Hans-Peter
    Amarteifio, Patrick
    May, Matthias Stefan
    Stroebel, Armin
    Zeilinger, Martin
    Uder, Michael
    Goelz, Lina
    Kopp, Markus
    INVESTIGATIVE RADIOLOGY, 2025, 60 (05) : 299 - 310
  • [32] Feasibility of salt pads to improve fat suppression in low-field MRI systems
    Sakoda, K.
    RADIOGRAPHY, 2022, 28 (04) : 877 - 880
  • [33] Gas-Gas Dispersion Coefficient Measurements Using Low-Field MRI
    Honari, Abdolvahab
    Vogt, Sarah J.
    May, Eric F.
    Johns, Michael L.
    TRANSPORT IN POROUS MEDIA, 2015, 106 (01) : 21 - 32
  • [34] Modern Low-Field MRI of the Musculoskeletal System Practice Considerations, Opportunities, and Challenges
    Khodarahmi, Iman
    Keerthivasan, Mahesh B.
    Brinkmann, Inge M.
    Grodzki, David
    Fritz, Jan
    INVESTIGATIVE RADIOLOGY, 2023, 58 (01) : 76 - 87
  • [35] MaRCoS, an open-source electronic control system for low-field MRI
    Negnevitsky, Vlad
    Vives-Gilabert, Yolanda
    Algarin, Jose M.
    Craven-Brightman, Lincoln
    Pellicer-Guridi, Ruben
    O'Reilly, Thomas
    Stockmann, Jason P.
    Webb, Andrew
    Alonso, Joseba
    Menkuec, Benjamin
    JOURNAL OF MAGNETIC RESONANCE, 2023, 350
  • [36] Low-Field MRI: How Low Can We Go? A Fresh View on an Old Debate
    Sarracanie, Mathieu
    Salameh, Najat
    FRONTIERS IN PHYSICS, 2020, 8
  • [37] Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI
    Sundaresan, Vaanathi
    Zamboni, Giovanna
    Dineen, Robert A.
    Auer, Dorothee P.
    Sotiropoulos, Stamatios N.
    Sprigg, Nikola
    Jenkinson, Mark
    Griffanti, Ludovica
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2025, 9 (01)
  • [38] Coil optimization for low-field MRI: a dedicated process for small animal preclinical studies
    Feuillet, T.
    Seurin, M-J
    Leveneur, O.
    Viguier, E.
    Beuf, O.
    LABORATORY ANIMALS, 2015, 49 (02) : 153 - 167
  • [39] Deep Learning-based Method for Denoising and Image Enhancement in Low-Field MRI
    Dang Bich Thuy Le
    Sadinski, Meredith
    Nacev, Aleksandar
    Narayanan, Ram
    Kumar, Dinesh
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2021,
  • [40] EFFECTS OF OBSERVER ON THE DIAGNOSTIC ACCURACY OF LOW-FIELD MRI FOR DETECTING CANINE MENISCAL TEARS
    Boettcher, Peter
    Armbrust, Laura
    Blond, Laurent
    Bruehschwein, Andreas
    Gavin, Patrick R.
    Gielen, Ingrid
    Hecht, Silke
    Jurina, Konrad
    Kneissl, Sibylle
    Konar, Martin
    Pujol, Esteban
    Robinson, Andrew
    Schaefer, Susan L.
    Theyse, Lars F. H.
    Wigger, Antje
    Ludewig, Eberhard
    VETERINARY RADIOLOGY & ULTRASOUND, 2012, 53 (06) : 628 - 635