Automated analysis of low-field brain MRI in cerebral malaria

被引:4
|
作者
Tu, Danni [1 ]
Goyal, Manu S. [2 ]
Dworkin, Jordan D. [3 ]
Kampondeni, Samuel [4 ]
Vidal, Lorenna [5 ]
Biondo-Savin, Eric [6 ]
Juvvadi, Sandeep [7 ]
Raghavan, Prashant [8 ]
Nicholas, Jennifer [9 ]
Chetcuti, Karen [10 ]
Clark, Kelly [1 ]
Robert-Fitzgerald, Timothy [1 ]
Satterthwaite, Theodore D. [11 ]
Yushkevich, Paul [12 ]
Davatzikos, Christos [12 ]
Erus, Guray [13 ]
Tustison, Nicholas J. [14 ]
Postels, Douglas G. [15 ]
Taylor, Terrie E. [4 ,16 ]
Small, Dylan S. [17 ]
Shinohara, Russell T. [1 ,13 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Penn Stat Imaging & Visualizat Endeavor PennSIVE, 217 Blockley Hall 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO USA
[3] Columbia Univ, Dept Psychiat, Irving Med Ctr, New York, NY USA
[4] Kamuzu Univ Hlth Sci, Blantyre Malaria Project, Blantyre, Southern Region, Malawi
[5] Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
[6] Michigan State Univ, Dept Radiol, E Lansing, MI 48824 USA
[7] Tenet Diagnost, Hyderabad, India
[8] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA
[10] Kamuzu Univ Hlth Sci, Dept Paediat & Child Hlth, Blantyre, Southern Region, Malawi
[11] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[12] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Radiol, Ctr Biomed Image Comp & Anal CBICA, Philadelphia, PA 19104 USA
[14] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[15] George Washington Univ, Childrens Natl Med Ctr, Div Neurol, Washington, DC USA
[16] Michigan State Univ, Coll Osteopath Med, E Lansing, MI 48824 USA
[17] Univ Penn, Dept Stat, 417 Acad Res Bldg 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
brain segmentation; data integration; Markov random field; MRI; IMAGE SEGMENTATION; MODEL; STRATEGIES; CHILDREN; COHORT;
D O I
10.1111/biom.13708
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.
引用
收藏
页码:2417 / 2429
页数:13
相关论文
共 50 条
  • [1] Modern low-field MRI
    Pogarell, Tobias
    Heiss, Rafael
    Janka, Rolf
    Nagel, Armin M.
    Uder, Michael
    Roemer, Frank W.
    SKELETAL RADIOLOGY, 2024, 53 (09) : 1751 - 1760
  • [2] Low-field musculoskeletal MRI
    Ghazinoor, Shaya
    Crues, John V., III
    Crowley, Chris
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 25 (02) : 234 - 244
  • [3] Low-field MRI pelvimetry
    Tukeva, TA
    Aronen, HJ
    Karjalainen, PT
    Makela, PJ
    EUROPEAN RADIOLOGY, 1997, 7 (02) : 230 - 234
  • [4] An evolution of low-field strength MRI
    Juergen Hennig
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2023, 36 : 335 - 346
  • [5] An evolution of low-field strength MRI
    Hennig, Juergen
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2023, 36 (03) : 335 - 346
  • [6] New challenges and opportunities for low-field MRI
    Anoardo, Esteban
    Rodriguez, Gonzalo G.
    JOURNAL OF MAGNETIC RESONANCE OPEN, 2023, 14-15
  • [7] Low-field MRI: An MR physics perspective
    Marques, Jose P.
    Simonis, Frank F. J.
    Webb, Andrew G.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (06) : 1528 - 1542
  • [8] Transverse low-field RF coils in MRI
    ClaasenVujcic, T
    Borsboom, HM
    Gaykema, HJG
    Mehlkopf, T
    MAGNETIC RESONANCE IN MEDICINE, 1996, 36 (01) : 111 - 116
  • [9] Accuracy of low-field MRI on meniscal tears
    Chen, H. N.
    Dong, Q. R.
    Wang, Y.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (02) : 4267 - 4271
  • [10] Prospective Assessment of Cerebral Microbleeds with Low-Field Magnetic Resonance Imaging (0.55 Tesla MRI)
    Rusche, Thilo
    Breit, Hanns-Christian
    Bach, Michael
    Wasserthal, Jakob
    Gehweiler, Julian
    Manneck, Sebastian
    Lieb, Johanna M.
    De Marchis, Gian Marco
    Psychogios, Marios
    Sporns, Peter B.
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (03)