DNA Framework-Programmed Nanoscale Enzyme Assemblies

被引:5
作者
Cao, Nan [1 ,2 ,3 ,4 ]
Guo, Ruiyan [1 ,2 ,5 ]
Song, Ping [6 ]
Wang, Shaopeng [1 ,2 ]
Liu, Gang [2 ,5 ]
Shi, Jiye [2 ,7 ]
Wang, Lihua [2 ,7 ]
Li, Min [1 ,2 ]
Zuo, Xiaolei [1 ,2 ]
Yang, Xiurong [3 ,4 ,8 ]
Fan, Chunhai [1 ,2 ,3 ,4 ]
Li, Mingqiang [1 ,2 ,3 ,4 ]
Zhang, Yueyue [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Renji Hosp, Inst Mol Med, Sch Med,Shanghai Key Lab Nucl Acid Chem & Nanomed, Shanghai 200127, Peoples R China
[3] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Natl Ctr Translat Med, Shanghai 200240, Peoples R China
[5] Shanghai Inst Measurement & Testing Technol, Key Lab Bioanal & Metrol State Market Regulat, Shanghai 201203, Peoples R China
[6] Shanghai Jiao Tong Univ, Sch Biomed Engn, State Key Lab Oncogenes & Related Genes, Shanghai 200030, Peoples R China
[7] Chinese Acad Sci, Shanghai Inst Appl Phys, Div Phys Biol, CAS Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China
[8] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
基金
上海市自然科学基金;
关键词
DNA Framework; Nanoscale Phase Separation; 3D Multienzyme Assemblies; Enzyme Cascade; ActivityEnhancement; MULTIENZYME COMPLEXES; CASCADE; CATALYSIS; DRIVEN; DESIGN;
D O I
10.1021/acs.nanolett.4c01137
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in similar to 5.9- and similar to 7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.
引用
收藏
页码:4682 / 4690
页数:9
相关论文
共 57 条
[1]   Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics [J].
Acevedo-Rocha, Carlos G. ;
Li, Aitao ;
D'Amore, Lorenzo ;
Hoebenreich, Sabrina ;
Sanchis, Joaquin ;
Lubrano, Paul ;
Ferla, Matteo P. ;
Garcia-Borras, Marc ;
Osuna, Silvia ;
Reetz, Manfred T. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   Structural basis for biomolecular recognition in overlapping binding sites in a diiron enzyme system [J].
Acheson, Justin F. ;
Bailey, Lucas J. ;
Elsen, Nathaniel L. ;
Fox, Brian G. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Self assembling nanoparticle enzyme clusters provide access to substrate channeling in multienzymatic cascades [J].
Breger, Joyce C. C. ;
Vranish, James N. N. ;
Oh, Eunkeu ;
Stewart, Michael H. H. ;
Susumu, Kimihiro ;
Lasarte-Aragone's, Guillermo ;
Ellis, Gregory A. A. ;
Walper, Scott A. A. ;
Diaz, Sebastian A. ;
Hooe, Shelby L. L. ;
Klein, William P. P. ;
Thakur, Meghna ;
Ancona, Mario G. G. ;
Medintz, Igor L. L. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   Enzyme clustering accelerates processing of intermediates through metabolic channeling [J].
Castellana, Michele ;
Wilson, Maxwell Z. ;
Xu, Yifan ;
Joshi, Preeti ;
Cristea, Ileana M. ;
Rabinowitz, Joshua D. ;
Gitai, Zemer ;
Wingreen, Ned S. .
NATURE BIOTECHNOLOGY, 2014, 32 (10) :1011-+
[5]   Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles [J].
Chen, Wei-Hai ;
Vazquez-Gonzalez, Margarita ;
Zoabi, Amani ;
Abu-Reziq, Raed ;
Willner, Itamar .
NATURE CATALYSIS, 2018, 1 (09) :689-695
[6]   Spontaneous nucleation and fast aggregate-dependent proliferation of α-synuclein aggregates within liquid condensates at neutral pH [J].
Dada, Samuel T. ;
Hardenberg, Maarten C. ;
Toprakcioglu, Zenon ;
Mrugalla, Lena K. ;
Cali, Mariana P. ;
McKeon, Mollie O. ;
Klimont, Ewa ;
Michaels, Thomas C. T. ;
Knowles, Tuomas P. J. ;
Vendruscolo, Michele .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (09)
[7]   Gold Nanoparticle Templating Increases the Catalytic Rate of an Amylase, Maltase, and Glucokinase Multienzyme Cascade through Substrate Channeling Independent of Surface Curvature [J].
Diaz, Sebastian A. ;
Choo, Priscilla ;
Oh, Eunkeu ;
Susumu, Kimihiro ;
Klein, William P. ;
Walper, Scott A. ;
Hastman, David A. ;
Odom, Teri W. ;
Medintz, Igor L. .
ACS CATALYSIS, 2021, 11 (02) :627-638
[8]   DNA-induced liquid phase condensation of cGAS activates innate immune signaling [J].
Du, Mingjian ;
Chen, Zhijian J. .
SCIENCE, 2018, 361 (6403) :704-+
[9]   Synthetic protein scaffolds provide modular control over metabolic flux [J].
Dueber, John E. ;
Wu, Gabriel C. ;
Malmirchegini, G. Reza ;
Moon, Tae Seok ;
Petzold, Christopher J. ;
Ullal, Adeeti V. ;
Prather, Kristala L. J. ;
Keasling, Jay D. .
NATURE BIOTECHNOLOGY, 2009, 27 (08) :753-U107
[10]   Assembly of multienzyme complexes on DNA nanostructures [J].
Fu, Jinglin ;
Yang, Yuhe Renee ;
Dhakal, Soma ;
Zhao, Zhao ;
Liu, Minghui ;
Zhang, Ting ;
Walter, Nils G. ;
Yan, Hao .
NATURE PROTOCOLS, 2016, 11 (11) :2243-2273