Global regularity for the 2D micropolar Rayleigh-Bénard convection system with velocity zero dissipation and temperature critical diffusion

被引:0
作者
Yuan, Baoquan [1 ,2 ]
Li, Changhao [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Henan, Peoples R China
[2] Henan Polytech Univ Jiaozuo, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
关键词
global regularity; micropolar Rayleigh-Benard convection system; Sobolev space; EULER-BOUSSINESQ SYSTEM; WELL-POSEDNESS; EQUATIONS; ATTRACTOR;
D O I
10.1002/mma.9985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the global regularity problem for the 2D micropolar Rayleigh-Benard convection system with velocity zero dissipation, micro-rotation velocity Laplace dissipation, and temperature critical diffusion. By introducing a combined quantity and using the technique of Littlewood-Paley decomposition, we establish the global regularity result of solutions to this system.
引用
收藏
页码:7502 / 7517
页数:16
相关论文
共 29 条