ReefCoreSeg: A Clustering-Based Framework for Multi-Source Data Fusion for Segmentation of Reef Drill Cores

被引:0
|
作者
Deo, Ratneel [1 ,2 ,3 ]
Webster, Jody M. [1 ,3 ]
Salles, Tristan [1 ,3 ]
Chandra, Rohitash [2 ,3 ,4 ]
机构
[1] Univ Sydney, Sch Geosci, Geocoastal Res Grp, Sydney, NSW 2050, Australia
[2] UNSW Sydney, Sch Math & Stat, Transit Artificial Intelligence Res Grp, Sydney, NSW 2052, Australia
[3] ARC ITTC Data Analyt Resources & Environm, Sydney, NSW 2751, Australia
[4] UNSW Sydney, UNSW Data Sci Hub, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Clustering; segmentation; multi-source data; classification; reef core analysis; Gaussian mixture models; CORAL-REEFS; ENVIRONMENTAL-CHANGES; IMAGE SEGMENTATION; CLASSIFICATION; ALGORITHMS;
D O I
10.1109/ACCESS.2023.3341156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coral reefs are among the most biologically diverse and economically valuable ecosystems on Earth, but they are threatened by climate change. Understanding how reefs developed over geological timescales can provide important information about past environmental changes and their impacts on reef systems. Significant effort and capital have been invested in drilling and analyzing reef cores. Recognizing coral and sediment patterns visually from fossil reefs is a laborious task that demands domain expertise. In this paper, we present a machine learning-based framework that utilizes clustering and classification methods to fuse multiple sources of data for the segmentation and annotation of reef cores. The framework produces an annotated image of a reef core with six lithologies identified; massive corals, encrusted corals, coralline algae, microbialite, sand, and silt. We utilize reef cores recovered from Expedition 325 of the International Ocean Discovery Program (IODP) to the Great Barrier Reef. We use reef core image data and physical properties data to segment reef cores. We evaluate the framework using selected clustering and classification models. The results show that Gaussian mixture models can provide accurate segmentation of reef core image data, with a clear visual distinction between two major classes: massive corals and stromatolitic microbialites. Furthermore, we find that the random forest classifier provides the best annotations for the segmented reef core image data with an accuracy of 96%.
引用
收藏
页码:12164 / 12180
页数:17
相关论文
共 50 条
  • [1] A General Multi-Source Data Fusion Framework
    Liu, Weiming
    Zhang, Chen
    Yu, Bin
    Li, Yitong
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 285 - 289
  • [2] Multi-source Data Clustering
    Li, Tiancheng
    Corchado, Juan M.
    Bajo, Javier
    Sun, Shudong
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 830 - 837
  • [3] A Multi-Source Data Fusion Network for Wood Surface Broken Defect Segmentation
    Zhu, Yuhang
    Xu, Zhezhuang
    Lin, Ye
    Chen, Dan
    Ai, Zhijie
    Zhang, Hongchuan
    SENSORS, 2024, 24 (05)
  • [4] Forest Types Classification Based on Multi-Source Data Fusion
    Lu, Ming
    Chen, Bin
    Liao, Xiaohan
    Yue, Tianxiang
    Yue, Huanyin
    Ren, Shengming
    Li, Xiaowen
    Nie, Zhen
    Xu, Bing
    REMOTE SENSING, 2017, 9 (11)
  • [5] A Clustering-based Framework for Classifying Data Streams
    Yan, Xuyang
    Homaifar, Abdollah
    Sarkar, Mrinmoy
    Girma, Abenezer
    Tunstel, Edward
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3257 - 3263
  • [6] A data fusion-based framework to integrate multi-source VGI in an authoritative land use database
    Liu, Lanfa
    Olteanu-Raimond, Ana-Maria
    Jolivet, Laurence
    Bris, Arnaud-le
    See, Linda
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (04) : 480 - 509
  • [7] Multi-source data fusion based on iterative deformation
    Xu, Zhi
    Dai, Ning
    Zhang, Changdong
    Song, Yinglong
    Sun, Yuchun
    Yuan, Fusong
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2014, 50 (07): : 191 - 198
  • [8] Medical image segmentation method based on multi-source information fusion
    Yang C.-C.
    Ye Z.-T.
    Liu B.-T.
    Wang K.
    Cui H.-D.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (02): : 226 - 234
  • [9] A hybrid feature fusion deep learning framework for multi-source medical image analysis
    Cao, Qiang
    Cheng, Xian
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (01)
  • [10] Multi-source data fusion study in scientometrics
    Hai-Yun Xu
    Zeng-Hui Yue
    Chao Wang
    Kun Dong
    Hong-Shen Pang
    Zhengbiao Han
    Scientometrics, 2017, 111 : 773 - 792