A convolutional neural network deep learning method for model class selection

被引:6
作者
Impraimakis, Marios [1 ,2 ]
机构
[1] Univ Southampton, Dept Civil Maritime & Environm Engn, Southampton, England
[2] Univ Southampton, Dept Civil Maritime & Environm Engn, Southampton SO16 7QF, England
关键词
artificial neural networks; convolutional neural networks; machine learning; model class selection-assessment; pattern recognition; physics-enhanced deep learning; structural health monitoring; STRUCTURAL DAMAGE DETECTION; BOUC-WEN MODEL; BEARING FAULT-DIAGNOSIS; PARAMETER-ESTIMATION; HYSTERETIC SYSTEMS; RANDOM VIBRATION; KALMAN FILTER; RESPONSE MEASUREMENTS; NUMERICAL-SOLUTION; IDENTIFICATION;
D O I
10.1002/eqe.4045
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The response-only model class selection capability of a novel deep convolutional neural network method is examined herein in a simple, yet effective, manner. Specifically, the responses from a unique degree of freedom along with their class information train and validate a one-dimensional convolutional neural network. In doing so, the network selects the model class of new and unlabeled signals without the need of the system input information, or full system identification. An optional physics-based algorithm enhancement is also examined using the Kalman filter to fuse the system response signals using the kinematics constraints of the acceleration and displacement data. Importantly, the method is shown to select the model class in slight signal variations attributed to the damping behavior or hysteresis behavior on both linear and nonlinear dynamic systems, as well as on a 3D building finite element model, providing a powerful tool for structural health monitoring applications.
引用
收藏
页码:784 / 814
页数:31
相关论文
共 99 条
[1]   1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data [J].
Abdeljaber, Osama ;
Avci, Onur ;
Kiranyaz, Mustafa Serkan ;
Boashash, Boualem ;
Sodano, Henry ;
Inman, Daniel J. .
NEUROCOMPUTING, 2018, 275 :1308-1317
[2]   Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks [J].
Abdeljaber, Osama ;
Avci, Onur ;
Kiranyaz, Serkan ;
Gabbouj, Moncef ;
Inman, Daniel J. .
JOURNAL OF SOUND AND VIBRATION, 2017, 388 :154-170
[3]  
Adhikari S, 2014, STRUCTURAL DYNAMIC ANALYSIS WITH GENERALIZED DAMPING MODELS: IDENTIFICATION, P1, DOI 10.1002/9781118862971
[4]  
Adhikari S., 2001, Damping models for structural vibration
[5]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[6]   Extension of Generalized Bouc-Wen Hysteresis Modeling of Wood Joints and Structural Systems [J].
Aloisio, Angelo ;
Alaggio, Rocco ;
Kohler, Jochen ;
Fragiacomo, Massimo .
JOURNAL OF ENGINEERING MECHANICS, 2020, 146 (03)
[7]   Managing engineering systems with large state and action spaces through deep reinforcement learning [J].
Andriotis, C. P. ;
Papakonstantinou, K. G. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 191
[8]   Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection [J].
Atha, Deegan J. ;
Jahanshahi, Mohammad R. .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2018, 17 (05) :1110-1128
[9]   A machine learning approach based on multifractal features for crack assessment of reinforced concrete shells [J].
Athanasiou, Apostolos ;
Ebrahimkhanlou, Arvin ;
Zaborac, Jarrod ;
Hrynyk, Trevor ;
Salamone, Salvatore .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2020, 35 (06) :565-578
[10]   A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications [J].
Avci, Onur ;
Abdeljaber, Osama ;
Kiranyaz, Serkan ;
Hussein, Mohammed ;
Gabbouj, Moncef ;
Inman, Daniel J. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 147