HYPERSPECTRAL PRISMA DATA PROCESSING FOR WATER QUALITY RESEARCH AND APPLICATIONS

被引:2
作者
Fabbretto, A. [1 ,2 ]
Pellegrino, A. [1 ]
Giardino, C. [1 ]
Bresciani, M. [1 ]
Alikas, K. [2 ]
Braga, F. [3 ]
Vaiciute, D. [4 ]
Lima, T. M. A. d. [5 ]
Mangano, S. [1 ]
Ghirardi, N. [1 ]
Daraio, M. G. [6 ]
Brando, V. E. [7 ]
机构
[1] Natl Res Council CNR IREA, Inst Electromagnet Sensing Environm, Milan, Italy
[2] Univ Tartu, Tartu Observ, Tartu, Tartu, Estonia
[3] Natl Res Council CNR ISMAR, Inst Marine Sci, Venice, Italy
[4] Univ Klaipeda, Coastal Res & Planning Inst, Marine Sci & Technol Ctr, Klaipeda, Lithuania
[5] Natl Inst Space Res INPE, Earth Observat & Geoinformat Div DIOTG, Sao Paulo, Brazil
[6] Italian Space Agcy, Rome, Italy
[7] Natl Res Council Italy CNR ISMAR, Inst Marine Sci, Rome, Italy
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
欧盟地平线“2020”;
关键词
Remote sensing; hyperspectral data; inland water; reflectance; water quality mapping; BLOOMS; LAKE;
D O I
10.1109/IGARSS52108.2023.10283366
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Climate change is having a significant negative impact on freshwater systems, which provide multiple ecosystem services. In this context, the present study aims to show an overview of the main objectives achieved by exploiting the hyperspectral reflectance data provided by the PRISMA sensor to map aquatic ecosystems. Water quality products were generated using three different approaches: the bio-optical model BOMBER, adaptive semi-empirical algorithms, and machine learning models. These methods were tested in very different waterbodies worldwide: five lakes, two lagoons and one river. To assess the accuracy of the water quality products, comparisons were performed with reference measurements. The results showed an average R-2 = 0.70 and encourage using PRISMA data for aquatic applications in synergy with existing multispectral and future hyperspectral data.
引用
收藏
页码:1744 / 1747
页数:4
相关论文
共 50 条
  • [31] Water Quality Retrieval from ZY1-02D Hyperspectral Imagery in Urban Water Bodies and Comparison with Sentinel-2
    Yang, Zhe
    Gong, Cailan
    Ji, Tiemei
    Hu, Yong
    Li, Lan
    REMOTE SENSING, 2022, 14 (19)
  • [32] Spectral indices for tracing leaf water status with hyperspectral reflectance data
    Yasir, Qazi Muhammad
    Zhang, Zhijie
    Tang, Jiakui
    Naveed, Muhammad
    Jahangir, Zahid
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (01) : 14523
  • [33] Applications of remote sensing for inland water quality
    Zhang, H
    Zhu, H
    Zeng, GM
    Huang, GH
    Li, ZW
    Christine, WC
    Qian, L
    Wan, YL
    Hong, YX
    Li, JB
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2004, 14 : 116 - 121
  • [34] Efficient Solution of Large-scale Domestic Hyperspectral Data Processing and Geological Application
    Yu, Junchuan
    Yan, Bokun
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [35] Cloud Detection in Hyperspectral Images with Atmospheric Column Water Vapor: Application to PRISMA and AVIRIS-NG Images
    Alakian, Alexandre
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 24
  • [36] Evaluation of Airborne HySpex and Spaceborne PRISMA Hyperspectral Remote Sensing Data for Soil Organic Matter and Carbonates Estimation
    Angelopoulou, Theodora
    Chabrillat, Sabine
    Pignatti, Stefano
    Milewski, Robert
    Karyotis, Konstantinos
    Brell, Maximilian
    Ruhtz, Thomas
    Bochtis, Dionysis
    Zalidis, George
    REMOTE SENSING, 2023, 15 (04)
  • [37] Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy
    Perretta, Miriam
    Delogu, Gabriele
    Funsten, Cassandra
    Patriarca, Alessio
    Caputi, Eros
    Boccia, Lorenzo
    REMOTE SENSING, 2024, 16 (19)
  • [38] Comparing the effectiveness of hyperspectral and multispectral data in detecting citrus nitrogen and water stresses
    Bhandari, Subodh
    Raheja, Amar
    Chaichi, Mohammad Reza
    Pham, Frank
    Sherman, Tristan
    Dohlen, Matthew
    Khan, Sharafat
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING IV, 2019, 11008
  • [39] Water quality assessment of River Ganga and Chilika lagoon using AVIRIS-NG hyperspectral data
    Chander, S.
    Gujrati, Ashwin
    Hakeem, K. Abdul
    Garg, Vaibhav
    Issac, Annie Maria
    Dhote, Pankaj R.
    Kumar, Vinay
    Sahay, Arvind
    CURRENT SCIENCE, 2019, 116 (07): : 1172 - 1181
  • [40] Applying of Methods of Processing of Hyperspectral Data for Identification of Traces of Explosives
    Maksimenko, Eugene V.
    Chernyshoya, Lyudmila V.
    Didenko, Aleksandr V.
    2016 17TH INTERNATIONAL CONFERENCE OF YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM), 2016, : 358 - 363