HYPERSPECTRAL PRISMA DATA PROCESSING FOR WATER QUALITY RESEARCH AND APPLICATIONS

被引:2
作者
Fabbretto, A. [1 ,2 ]
Pellegrino, A. [1 ]
Giardino, C. [1 ]
Bresciani, M. [1 ]
Alikas, K. [2 ]
Braga, F. [3 ]
Vaiciute, D. [4 ]
Lima, T. M. A. d. [5 ]
Mangano, S. [1 ]
Ghirardi, N. [1 ]
Daraio, M. G. [6 ]
Brando, V. E. [7 ]
机构
[1] Natl Res Council CNR IREA, Inst Electromagnet Sensing Environm, Milan, Italy
[2] Univ Tartu, Tartu Observ, Tartu, Tartu, Estonia
[3] Natl Res Council CNR ISMAR, Inst Marine Sci, Venice, Italy
[4] Univ Klaipeda, Coastal Res & Planning Inst, Marine Sci & Technol Ctr, Klaipeda, Lithuania
[5] Natl Inst Space Res INPE, Earth Observat & Geoinformat Div DIOTG, Sao Paulo, Brazil
[6] Italian Space Agcy, Rome, Italy
[7] Natl Res Council Italy CNR ISMAR, Inst Marine Sci, Rome, Italy
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
欧盟地平线“2020”;
关键词
Remote sensing; hyperspectral data; inland water; reflectance; water quality mapping; BLOOMS; LAKE;
D O I
10.1109/IGARSS52108.2023.10283366
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Climate change is having a significant negative impact on freshwater systems, which provide multiple ecosystem services. In this context, the present study aims to show an overview of the main objectives achieved by exploiting the hyperspectral reflectance data provided by the PRISMA sensor to map aquatic ecosystems. Water quality products were generated using three different approaches: the bio-optical model BOMBER, adaptive semi-empirical algorithms, and machine learning models. These methods were tested in very different waterbodies worldwide: five lakes, two lagoons and one river. To assess the accuracy of the water quality products, comparisons were performed with reference measurements. The results showed an average R-2 = 0.70 and encourage using PRISMA data for aquatic applications in synergy with existing multispectral and future hyperspectral data.
引用
收藏
页码:1744 / 1747
页数:4
相关论文
共 50 条
  • [1] First Evaluation of PRISMA Level 1 Data for Water Applications
    Giardino, Claudia
    Bresciani, Mariano
    Braga, Federica
    Fabbretto, Alice
    Ghirardi, Nicola
    Pepe, Monica
    Gianinetto, Marco
    Colombo, Roberto
    Cogliati, Sergio
    Ghebrehiwot, Semhar
    Laanen, Marnix
    Peters, Steef
    Schroeder, Thomas
    Concha, Javier A.
    Brando, Vittorio E.
    SENSORS, 2020, 20 (16) : 1 - 16
  • [2] Assessment of water quality parameters in Muthupet estuary using hyperspectral PRISMA satellite and multispectral images
    Rahul, T. S.
    Brema, J.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (07)
  • [3] THE USE OF HYPERSPECTRAL DATA FOR EVALUATION OF WATER QUALITY PARAMETERS IN THE RIVER SAVA
    Kisevic, Mak
    Morovic, Mira
    Andricevic, Roko
    FRESENIUS ENVIRONMENTAL BULLETIN, 2016, 25 (11): : 4814 - 4822
  • [4] PROCESSING OF DRONE-BORNE HYPERSPECTRAL DATA FOR GEOLOGICAL APPLICATIONS
    Jakob, Sandra
    Zimmermann, Robert
    Gloaguen, Richard
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [5] Machine learning for cyanobacteria mapping on tropical urban reservoirs using PRISMA hyperspectral data
    Begliomini, Felipe N.
    Barbosa, Claudio C. F.
    Martins, Vitor S.
    Novo, Evlyn M. L. M.
    Paulino, Rejane S.
    Maciel, Daniel A.
    Lima, Thainara M. A.
    O'Shea, Ryan E.
    Pahlevan, Nima
    Lamparelli, Marta C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 204 : 378 - 396
  • [6] Research on the Characteristic Spectral Band Determination for Water Quality Parameters Retrieval Based on Satellite Hyperspectral Data
    Xia, Xietian
    Lu, Hui
    Xu, Zenghui
    Li, Xiang
    Tian, Yu
    REMOTE SENSING, 2023, 15 (23)
  • [7] Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in a Turbid Lake and Comparison with Sentinel-2
    Niroumand-Jadidi, Milad
    Bovolo, Francesca
    Bruzzone, Lorenzo
    REMOTE SENSING, 2020, 12 (23) : 1 - 21
  • [8] MACHINE LEARNING REGRESSION ON HYPERSPECTRAL DATA TO ESTIMATE MULTIPLE WATER PARAMETERS
    Maier, Philipp M.
    Keller, Sina
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [9] Grid computing for hyperspectral data processing
    Robila, Stefan A.
    Senedzuk, Nicholas A.
    NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES, 2007, 6765
  • [10] Inland water quality parameters retrieval based on the VIP-SPCA by hyperspectral remote sensing
    Wang, Xinhui
    Gong, Cailan
    Ji, Tiemei
    Hu, Yong
    Li, Lan
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (04)