Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index

被引:0
|
作者
Zhao, Lili [1 ]
Li, Lusheng [1 ]
Li, Yanbin [1 ]
Zhong, Huayu [2 ]
Zhang, Fang [3 ]
Zhu, Junzhen [3 ]
Ding, Yibo [4 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Water Conservancy, Zhengzhou 450046, Peoples R China
[2] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Peoples R China
[3] Macau Univ Sci & Technol, Univ Int Coll, Taipa 999078, Macao, Peoples R China
[4] Yellow River Engn Consulting Co Ltd, Zhengzhou 450003, Peoples R China
基金
中国国家自然科学基金;
关键词
vegetation drought; Vegetation Drought Condition Index (VDCI); Normalized Difference Vegetation Index (NDVI); vegetation dynamics; climate change; China; CLIMATE-CHANGE; HYDROLOGICAL DROUGHTS; TIME; PRECIPITATION; DIFFERENCE; RESPONSES; IMPACTS; NDVI3G; GIMMS; WATER;
D O I
10.1007/s40333-023-0072-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effect of global climate change on vegetation growth is variable. Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation, and even regional protection of ecological environments. In this study, we constructed a new drought index (i.e., Vegetation Drought Condition Index (VDCI)) based on precipitation, potential evapotranspiration, soil moisture and Normalized Difference Vegetation Index (NDVI) data, to monitor vegetation drought in the nine major river basins (including the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin, Yangtze River Basin, Southeast River Basin, Pearl River Basin, Southwest River Basin and Continental River Basin) in China at 1-month-12-month (T1-T12) time scales. We used the Pearson's correlation coefficients to assess the relationships between the drought indices (the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil Moisture Index (SSMI) and Self-calibrating Palmer Drought Severity Index (scPDSI)) and the NDVI at T1-T12 time scales, and to estimate and compare the lag times of vegetation response to drought among different drought indices. The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1-T6 time scales. Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales. Potential evapotranspiration shows a higher degree of positive influence on vegetation, and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins. The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin and Yangtze River Basin at T1-T4 time scales. In general, the VDCI is more sensitive (with shorter lag time of vegetation response to drought) than the traditional drought indices (SPEI, scPDSI and SSMI) in monitoring vegetation drought, and thus it could be applied to monitor short-term vegetation drought. The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate, and can be applied in other fields of vegetation drought monitoring with complex mechanisms.
引用
收藏
页码:1421 / 1438
页数:18
相关论文
共 50 条
  • [41] A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring
    Wang, Fei
    Wang, Zongmin
    Yang, Haibo
    Di, Danyang
    Zhao, Yong
    Liang, Qiuhua
    JOURNAL OF HYDROLOGY, 2020, 585
  • [42] Monitoring drought events and vegetation dynamics in relation to climate change over mainland China from 1983 to 2016
    Ali, Shahzad
    Zhang, Haixing
    Qi, Ma
    Liang, Sun
    Ning, Jiang
    Jia, Qianmin
    Hou, Fujiang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (17) : 21910 - 21925
  • [43] Monitoring drought dynamics in China using Optimized Meteorological Drought Index (OMDI) based on remote sensing data sets
    Wei, Wei
    Zhang, Jing
    Zhou, Junju
    Zhou, Liang
    Xie, Binbin
    Li, Chuanhua
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 292
  • [44] Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin, China
    Huang, Shengzhi
    Huang, Qiang
    Chang, Jianxia
    Zhu, Yuelu
    Leng, Guoyong
    Xing, Li
    JOURNAL OF HYDROLOGY, 2015, 530 : 127 - 136
  • [45] SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China
    Li, Chuanhua
    Peng, Lixiao
    Zhou, Min
    Wei, Yufei
    Liu, Lihui
    Li, Liangliang
    Liu, Yunfan
    Dou, Tianbao
    Chen, Jiahao
    Wu, Xiaodong
    REMOTE SENSING, 2022, 14 (06)
  • [46] Analyzing the extent of drought in the Rajasthan state of India using vegetation condition index and standardized precipitation index
    Deeksha Mishra
    Suresh Goswami
    Shafique Matin
    Jyoti Sarup
    Modeling Earth Systems and Environment, 2022, 8 : 601 - 610
  • [47] Assessment of vegetation growth and drought conditions using satellite-based vegetation health indices in Jing-Jin-Ji region of China
    Jiang, Rengui
    Liang, Jichao
    Zhao, Yong
    Wang, Hao
    Xie, Jiancang
    Lu, Xixi
    Li, Fawen
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] Multidimensional Response Evaluation of Remote-Sensing Vegetation Change to Drought Stress in the Three-River Headwaters, China
    Zhu, Shuang
    Xiao, Zuxiang
    Luo, Xiangang
    Zhang, Hairong
    Liu, Xiuwei
    Wang, Rui
    Zhang, Mingzhi
    Huo, Zhibin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 6249 - 6259
  • [49] Analyzing the extent of drought in the Rajasthan state of India using vegetation condition index and standardized precipitation index
    Mishra, Deeksha
    Goswami, Suresh
    Matin, Shafique
    Sarup, Jyoti
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (01) : 601 - 610
  • [50] Impacts of vegetation dynamics on hydrological simulations under drought conditions in a humid river basin in Southern China
    Liu, Cancan
    Chen, Yongqin David
    ECOHYDROLOGY, 2024, 17 (03)