Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene

被引:29
作者
Pan, Long [1 ]
Hu, Rongxiang [1 ]
Zhang, Yuan [1 ]
Sha, Dawei [1 ]
Cao, Xin [1 ]
Li, Zhuoran [1 ]
Zhao, Yonggui [2 ]
Ding, Jiangxiang [3 ]
Wang, Yaping [1 ]
Sun, Zhengming [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Key Lab Adv Met Mat Jiangsu Prov, Nanjing 211189, Peoples R China
[2] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Transition metal tellurides; Heterostructures; Built-in electric field; Potassium-ion batteries; Anode material; TITANIUM CARBIDE MXENE; GRAPHENE; ANODE;
D O I
10.1007/s40820-023-01202-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti(3)C(2)T(x )MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti(3)C(2)Tx (CZT) exhibit excellent rate capability (137.0 mAh g(-1) at 10 A g(-1)) and cycling stability (175.3 mAh g(-1) after 4000 cycles at 3.0 A g(-1), with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg(-1)) and power density (837.2 W kg(-1)). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
引用
收藏
页数:14
相关论文
共 49 条
[1]   A Mini-Review: MXene composites for sodium/potassium-ion batteries [J].
Aslam, Muhammad Kashif ;
Xu, Maowen .
NANOSCALE, 2020, 12 (30) :15993-16007
[2]   Microbe-Assisted Assembly of Ti3C2Tx MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage [J].
Cao, Junming ;
Sun, Ziqi ;
Li, Junzhi ;
Zhu, Yukun ;
Yuan, Zeyu ;
Zhang, Yuming ;
Li, Dongdong ;
Wang, Lili ;
Han, Wei .
ACS NANO, 2021, 15 (02) :3423-3433
[3]   Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors [J].
Chang, Chao-Hung ;
Chen, Kuan-Ting ;
Hsieh, Yi-Yen ;
Chang, Che-Bin ;
Tuan, Hsing-Yu .
ACS NANO, 2022, 16 (01) :1486-1501
[4]   Conversion-alloying dual mechanism anode: Nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage [J].
Chen, Kuan-Ting ;
Chong, Shaokun ;
Yuan, Lingling ;
Yang, Yi-Chun ;
Tuan, Hsing-Yu .
ENERGY STORAGE MATERIALS, 2021, 39 :239-249
[5]   Reversible Oxygen-Rich Functional Groups Grafted 3D Honeycomb-Like Carbon Anode for Super-Long Potassium Ion Batteries [J].
Cheng, Na ;
Zhou, Wang ;
Liu, Jilei ;
Liu, Zhigang ;
Lu, Bingan .
NANO-MICRO LETTERS, 2022, 14 (01)
[6]   Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries [J].
Fan, Huilin ;
Mao, Pengcheng ;
Sun, Hongyu ;
Wang, Yuan ;
Mofarah, Sajjad S. ;
Koshy, Pramod ;
Arandiyan, Hamidreza ;
Wang, Zhiyuan ;
Liu, Yanguo ;
Shao, Zongping .
MATERIALS HORIZONS, 2022, 9 (02) :524-546
[7]   Interfacial Coupling SnSe2/SnSe Heterostructures as Long Cyclic Anodes of Lithium-Ion Battery [J].
Feng, Wang ;
Wen, Xia ;
Wang, Yuzhu ;
Song, Luying ;
Li, Xiaohui ;
Du, Ruofan ;
Yang, Junbo ;
Li, Hui ;
He, Jun ;
Shi, Jianping .
ADVANCED SCIENCE, 2023, 10 (02)
[8]   Anchoring Metal-Organic Framework-Derived ZnTe@C onto Elastic Ti3C2Tx MXene with 0D/2D Dual Confinement for Ultrastable Potassium-Ion Storage [J].
Hu, Rongxiang ;
Sha, Dawei ;
Cao, Xin ;
Lu, Chengjie ;
Wei, Yicheng ;
Pan, Long ;
Sun, ZhengMing .
ADVANCED ENERGY MATERIALS, 2022, 12 (47)
[9]   Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries [J].
Imtiaz, Sumair ;
Amiinu, Ibrahim Saana ;
Xu, Yang ;
Kennedy, Tadhg ;
Blackman, Chris ;
Ryan, Kevin M. .
MATERIALS TODAY, 2021, 48 :241-269
[10]   Bio-Derived Hierarchical Multicore-Shell Fe2N-Nanoparticle-Impregnated N-Doped Carbon Nanofiber Bundles: A Host Material for Lithium-/Potassium-Ion Storage [J].
Jiang, Hongjun ;
Huang, Ling ;
Wei, Yunhong ;
Wang, Boya ;
Wu, Hao ;
Zhang, Yun ;
Liu, Huakun ;
Dou, Shixue .
NANO-MICRO LETTERS, 2019, 11 (01)