On the length of D(±1)-tuples in imaginary quadratic rings

被引:0
|
作者
Cipu, Mihai [1 ]
Fujita, Yasutsugu [2 ]
机构
[1] Romanian Acad, Sim Stoilow Inst Math, Bucharest, Romania
[2] Nihon Univ, Coll Ind Technol, Dept Math, 2-11-1 Shin Ei, Narashino, Chiba, Japan
关键词
D O I
10.1112/blms.12929
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an imaginary quadratic field and O-K its ring of integers. Fix a rational integer e. A set {a(1), a(2), ... , a(m)} subset of O-K \ {0} is called a D(epsilon)-m-tuple in O-K if a(i)a(j)+ epsilon = x(ij)(2), where x(ij) is an element of O-K for all i, j such that 1 <= i < j <= m. Here, we prove the non-existence of D(epsilon)-m-tuples in O-K for epsilon is an element of {-1, 1} and m > 24.
引用
收藏
页码:274 / 287
页数:14
相关论文
共 50 条