MOTOR IMAGERY CLASSIFICATION USING EEG SPECTROGRAMS

被引:1
|
作者
Khan, Saadat Ullah [1 ]
Majid, Muhammad [1 ]
Anwar, Syed Muhammad [2 ,3 ]
机构
[1] Univ Engn & Technol, Dept Comp Engn, Taxila, Pakistan
[2] Natl Childrens Hosp, Sheikh Zayed Inst Pediat Surg Innovat, Washington, DC 20010 USA
[3] George Washington Univ, Sch Med & Hlth Sci, Washington, DC 20052 USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Spinal cord injury; Upper limb movement; Electroencephalography; Spectrogram; Deep Learning;
D O I
10.1109/ISBI53787.2023.10230450
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The loss of limb motion arising from damage to the spinal cord is a disability that could effect people while performing their day-to-day activities. The restoration of limb movement would enable people with spinal cord injury to interact with their environment more naturally and this is where a brain-computer interface (BCI) system could be beneficial. The detection of limb movement imagination (MI) could be significant for such a BCI, where the detected MI can guide the computer system. Using MI detection through electroencephalography (EEG), we can recognize the imagination of movement in a user and translate this into a physical movement. In this paper, we utilize pre-trained deep learning (DL) algorithms for the classification of imagined upper limb movements. We use a publicly available EEG dataset with data representing seven classes of limb movements. We compute the spectro-grams of the time series EEG signal and use them as an input to the DL model for MI classification. Our novel approach for the classification of upper limb movements using pre-trained DL algorithms and spectrograms has achieved significantly improved results for seven movement classes. When compared with the recently proposed state-of-the-art methods, our algorithm achieved a significant average accuracy of 84.9% for classifying seven movements.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Effects of local and global spatial patterns in EEG motor-imagery classification using convolutional neural network
    Liao, Jacob Jiexun
    Luo, Joy Jiayu
    Yang, Tao
    So, Rosa Qi Yue
    Chua, Matthew Chin Heng
    BRAIN-COMPUTER INTERFACES, 2020, 7 (3-4) : 47 - 56
  • [22] EEG-ITNet: An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification
    Salami, Abbas
    Andreu-Perez, Javier
    Gillmeister, Helge
    IEEE ACCESS, 2022, 10 : 36672 - 36685
  • [23] Motor Imagery Classification via Temporal Attention Cues of Graph Embedded EEG Signals
    Zhang, Dalin
    Chen, Kaixuan
    Jian, Debao
    Yao, Lina
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (09) : 2570 - 2579
  • [24] A parallel-hierarchical neural network (PHNN) for motor imagery EEG signal classification
    Lu, Keyi
    Guo, Hao
    Gu, Zhihao
    Qi, Fei
    Kuang, Shaolong
    Sun, Lining
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [25] Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification
    Huang, Xiuyu
    Choi, Kup-Sze
    Zhou, Nan
    Zhang, Yuanpeng
    Chen, Badong
    Pedrycz, Witold
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (02) : 521 - 533
  • [26] EEG-Channel-Temporal-Spectral-Attention Correlation for Motor Imagery EEG Classification
    Hsu, Wei-Yen
    Cheng, Ya-Wen
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1659 - 1669
  • [27] Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO
    Huang, Weihai
    Liu, Xinyue
    Yang, Weize
    Li, Yihua
    Sun, Qiyan
    Kong, Xiangzeng
    SENSORS, 2024, 24 (12)
  • [28] Motor Imagery Eeg Classification Using Random Subspace Ensemble Network With Variable Length Features
    Nazi Z.A.
    Hossain A.B.M.A.
    Islam M.M.
    International Journal Bioautomation, 2021, 25 (01) : 13 - 24
  • [29] Distinguishing Resting State From Motor Imagery Swallowing Using EEG and Deep Learning Models
    Aslan, Sevgi Gokce
    Yilmaz, Bulent
    IEEE ACCESS, 2024, 12 : 178375 - 178389
  • [30] Subject-Independent Classification of Motor Imagery Tasks in EEG Using Multisubject Ensemble CNN
    Dolzhikova, Irina
    Abibullaev, Berdakh
    Sameni, Reza
    Zollanvari, Amin
    IEEE ACCESS, 2022, 10 : 81355 - 81363