Scout:An Efficient Federated Learning Client Selection Algorithm Driven by Heterogeneous Data and Resource

被引:3
|
作者
Zhang, Ruilin [1 ]
Xu, Zhenan [1 ]
Yin, Hao [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON JOINT CLOUD COMPUTING, JCC | 2023年
基金
中国国家自然科学基金;
关键词
federated learning; client selection; combinatorial optimization; utility function;
D O I
10.1109/JCC59055.2023.00012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning is a novel distributed machine learning paradigm that leverages the computing power of numerous decentralized data sources for jointly training machine learning models while ensuring user privacy. In the most commonly used cross-device scenarios, the client cluster typically cover a vast number of heterogeneous end devices. Due to physical limitations such as bandwidth, only a few clients can participate in each round of training. The core issue of the client selection is to determine an appropriate client set for each training round. However, existing selection algorithms, especially the widely adopted random selection, suffer from a number of issues that prevent them from achieving a good balance between training efficiency and speed. Therefore, we propose Scout, which utilizes the heterogeneity features of clients' data and resources to jointly model the utility function, and enhances the utilization of correlation among clients and the diversity among selected clients to achieve better training efficiency and speed. Furthermore, Scout maintains the scalability and fairness. Our experiments demonstrate that in large-scale heterogeneous clients scenarios, Scout outperforms three baseline algorithms and the state-of-the-art dual-feature dimension algorithm Oort in evaluation metrics.
引用
收藏
页码:46 / 49
页数:4
相关论文
共 50 条
  • [31] FedCLS:A federated learning client selection algorithm based on cluster label information
    Li, Changsong
    Wu, Hao
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [32] Joint Client Selection and Bandwidth Allocation Algorithm for Federated Learning
    Ko, Haneul
    Lee, Jaewook
    Seo, Sangwon
    Pack, Sangheon
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (06) : 3380 - 3390
  • [33] Federated Learning for Heterogeneous Mobile Edge Device: A Client Selection Game
    Liu, Tongfei
    Wang, Hui
    Ma, Maode
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 897 - 902
  • [34] Federated Learning With Client Selection and Gradient Compression in Heterogeneous Edge Systems
    Xu, Yang
    Jiang, Zhida
    Xu, Hongli
    Wang, Zhiyuan
    Qian, Chen
    Qiao, Chunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5446 - 5461
  • [35] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [36] Towards Client Selection in Satellite Federated Learning
    Wu, Changhao
    He, Siyang
    Yin, Zengshan
    Guo, Chongbin
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [37] Delay-Constrained Client Selection for Heterogeneous Federated Learning in Intelligent Transportation Systems
    Zhang, Weiwen
    Chen, Yanxi
    Jiang, Yifeng
    Liu, Jianqi
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (01): : 1042 - 1054
  • [38] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [39] THF: 3-Way Hierarchical Framework for Efficient Client Selection and Resource Management in Federated Learning
    Asad, Muhammad
    Moustafa, Ahmed
    Rabhi, Fethi A.
    Aslam, Muhammad
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11085 - 11097
  • [40] Quality-aware Client Selection and Resource Optimization for Federated Learning in Computing Networks
    Liao, Yanyan
    Feng, Jie
    Zhou, Zongjie
    Shang, Bodong
    Liu, Lei
    Pei, Qingqi
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2628 - 2633