Air Quality Index (AQI) Prediction in Holy Makkah Based on Machine Learning Methods

被引:2
|
作者
Almaliki, Abdulrazak H. [1 ]
Derdour, Abdessamed [2 ,3 ]
Ali, Enas [4 ]
机构
[1] Taif Univ, Coll Engn, Dept Civil Engn, POB 11099, Taif 21944, Saudi Arabia
[2] Univ Ctr Naama, Artificial Intelligence Lab Mech & Civil Struct &, POB 66, Naama 45000, Algeria
[3] Univ Ctr Salhi Ahmed Naama, Ctr Univ Naama, Lab Sustainable Management Nat Resources Arid & Se, POB 66, Naama 45000, Algeria
[4] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
关键词
Makkah; EBOT; FDT; EBAT; prediction; NEURAL-NETWORKS; POLLUTION; MORTALITY; HEALTH; RISK;
D O I
10.3390/su151713168
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Makkah draws millions of visitors during Hajj and Ramadan, establishing itself as one of Saudi Arabia's most bustling cities. The imperative lies in maintaining pristine air quality and comprehending diverse air pollutants to effectively manage and model air pollution. Given the capricious and variably spatiotemporal nature of pollution, predicting air quality emerges as a notably intricate endeavor. In this study, we confronted this challenge head-on by harnessing sophisticated machine learning techniques, encompassing the fine decision tree (FDT), ensemble boosted tree (EBOT), and ensemble bagged tree (EBAT). These advanced methodologies were enlisted to project air quality index (AQI) levels, focusing specifically on the Makkah region. Constructed and trained on air quality data spanning 2016 to 2018, our forecast models unearthed noteworthy insights. The outcomes revealed that EBOT exhibited unparalleled accuracy at 97.4%, astutely predicting 75 out of 77 samples. On the other hand, FDT and EBAT achieved accuracies of 96.1% and 94.8%, respectively. Consequently, the EBOT model emerges as the epitome of reliability, showcasing its prowess in forecasting the air quality index. We believe that the insights garnered from this research possess universal applicability, extending their potential to regions worldwide.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Characteristics of ambient air quality and its air quality index (AQI) model in Shanghai, China
    Jiang, Zexi
    Gao, Yunchuan
    Cao, Huaxing
    Diao, Weixia
    Yao, Xu
    Yuan, Cancan
    Fan, Yueying
    Chen, Ya
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 896
  • [32] Prediction of Air Quality Index by Extreme Learning Machines
    Baran, Burhan
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP 2019), 2019,
  • [33] Air-to-Air Path Loss Prediction Based on Machine Learning Methods in Urban Environments
    Zhang, Yan
    Wen, Jinxiao
    Yang, Guanshu
    He, Zunwen
    Luo, Xinran
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,
  • [34] Air Quality Prediction Of Data Log By Machine Learning
    Pasupuleti, Venkat Rao
    Uhasri
    Kalyan, Pavan
    Srikanth
    Reddy, Hari Kiran
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 1395 - 1399
  • [35] A new hybrid prediction model of air quality index based on secondary decomposition and improved kernel extreme learning machine
    Li, Guohui
    Tang, Yuze
    Yang, Hong
    CHEMOSPHERE, 2022, 305
  • [36] Prediction of Air Quality Index Based on LSTM
    Jiao, Yu
    Wang, Zhifeng
    Zhang, Yang
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 17 - 20
  • [37] Forecasting air quality index (AQI) and air quality health index (AQHI) by time series models in Ahvaz, Iran
    Zahedi, Amir
    Jaafarzadeh, Neamatollah
    Mirr, Iman
    Tahmasebi, Yaser
    ENVIRONMENTAL HEALTH ENGINEERING AND MANAGEMENT JOURNAL, 2024, 11 (04): : 469 - 476
  • [38] Evaluation of machine learning and deep learning models for daily air quality index prediction in Delhi city, India
    Pande, Chaitanya Baliram
    Radhadevi, Latha
    Satyanarayana, Murthy Bandaru
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (12)
  • [39] Water quality prediction using machine learning methods
    Haghiabi, Amir Hamzeh
    Nasrolahi, Ali Heidar
    Parsaie, Abbas
    WATER QUALITY RESEARCH JOURNAL OF CANADA, 2018, 53 (01): : 3 - 13
  • [40] Machine learning methods for better water quality prediction
    Ahmed, Ali Najah
    Othman, Faridah Binti
    Afan, Haitham Abdulmohsin
    Ibrahim, Rusul Khaleel
    Fai, Chow Ming
    Hossain, Md Shabbir
    Ehteram, Mohammad
    Elshafie, Ahmed
    JOURNAL OF HYDROLOGY, 2019, 578