Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery

被引:12
作者
Xue, Yinghao [1 ]
Jia, Yan [1 ]
Liu, Shuan [1 ]
Yuan, Shiyin [1 ]
Ma, Raner [1 ]
Ma, Qian [1 ]
Fan, Jianwei [1 ]
Zhang, Wei-xian [1 ]
机构
[1] Tongji Univ, Shanghai Inst Pollut Control & Ecol Secur, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrochemical reduction processes; Non-noble cathode; Oxyanions; Halogenated organics; Industrial wastewater valorization; ZERO-VALENT IRON; ENHANCED ELECTROCATALYTIC DECHLORINATION; NITRATE REDUCTION; CARBON-TETRACHLORIDE; CATALYTIC TREATMENT; ELECTRON-TRANSFER; HALOACETIC ACIDS; REMOVAL; CR(VI); HYDROGEN;
D O I
10.1016/j.jhazmat.2023.132106
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
引用
收藏
页数:18
相关论文
共 170 条
[1]   Aqueous-phase dechlorination of toxic chloroethylenes by vitamin B12 cobalt center:: Conventional and polypyrrole film-based electrochemical studies [J].
Ahuja, DK ;
Gavalas, VG ;
Bachas, LG ;
Bhattacharyya, D .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (04) :1049-1055
[2]   Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review [J].
Akhade, Sneha A. ;
Singh, Nirala ;
Gutierrez, Oliver Y. ;
Lopez-Ruiz, Juan ;
Wang, Huamin ;
Holladay, Jamie D. ;
Liu, Yue ;
Karkamkar, Abhijeet ;
Weber, Robert S. ;
Padmaperuma, Asanga B. ;
Lee, Mal-Soon ;
Whyatt, Greg A. ;
Elliott, Michael ;
Holladay, Johnathan E. ;
Male, Jonathan L. ;
Lercher, Johannes A. ;
Rousseau, Roger ;
Glezakou, Vassiliki-Alexandra .
CHEMICAL REVIEWS, 2020, 120 (20) :11370-11419
[3]   Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion [J].
Alkhadra, Mohammad A. ;
Su, Xiao ;
Suss, Matthew E. ;
Tian, Huanhuan ;
Guyes, Eric N. ;
Shocron, Amit N. ;
Conforti, Kameron M. ;
de Souza, J. Pedro ;
Kim, Nayeong ;
Tedesco, Michele ;
Khoiruddin, Khoiruddin ;
Wenten, I. Gede ;
Santiago, Juan G. ;
Hatton, T. Alan ;
Bazant, Martin Z. .
CHEMICAL REVIEWS, 2022, 122 (16) :13547-13635
[4]   Metal-mediated reductive hydrodehalogenation of organic halides [J].
Alonso, F ;
Beletskaya, IP ;
Yus, M .
CHEMICAL REVIEWS, 2002, 102 (11) :4009-4091
[5]   Biologically inspired catalyst for electrochemical reduction of hazardous hexavalent chromium [J].
Aralekallu, Shambhulinga ;
Palanna, Manjunatha ;
Hadimani, Sowmyashree ;
Prabhu, Keshavananda C. P. ;
Sajjan, Veeresh A. ;
Thotiyl, Musthafa Ottakam ;
Sannegowda, Lokesh Koodlur .
DALTON TRANSACTIONS, 2020, 49 (42) :15061-15071
[6]   Synthesis of novel azo group substituted polymeric phthalocyanine for amperometric sensing of nitrite [J].
Aralekallu, Shambhulinga ;
Mohammed, Imadadulla ;
Manjunatha, Nemakal ;
Palanna, Manjunatha ;
Dhanjai ;
Sannegowda, Lokesh Koodlur .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 282 :417-425
[7]   Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review [J].
Bae, Sungjun ;
Collins, Richard N. ;
Waite, T. David ;
Hanna, Khalil .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (21) :12010-12025
[8]   Development of Pd-based catalysts for hydrogenation of nitrite and nitrate in water: A review [J].
Boasiako, Collins Antwi ;
Zhou, Zhe ;
Huo, Xiangchen ;
Ye, Tao .
JOURNAL OF HAZARDOUS MATERIALS, 2023, 446
[9]   Robust Iron Coordination Complexes with N-Based Neutral Ligands As Efficient Fenton-Like Catalysts at Neutral pH [J].
Canals, Maite ;
Gonzalez-Olmos, Rafael ;
Costas, Miquel ;
Company, Anna .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (17) :9918-9927
[10]   Weak electric field enabling enhanced selectivity of tannic acid-graphene aerogels for Pb2+harvesting from wastewater [J].
Chang, Ziwen ;
Yang, Liming ;
Zhang, Kai ;
Hu, Wenbin ;
Ni, Chenquan ;
Shao, Penghui ;
Shi, Hui ;
Yu, Kai ;
Luo, Xubiao .
CHEMICAL ENGINEERING JOURNAL, 2021, 416