HOMOLOGY GROUP AUTOMORPHISMS OF RIEMANN SURFACES

被引:0
|
作者
Hidalgo, Ruben A. [1 ]
机构
[1] Univ La Frontera, Dept Matemat & Estadist, Temuco, Chile
关键词
Riemann surface; automorphism; Fuchsian group;
D O I
10.17323/1609-4514-2023-23-1-113-120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If & UGamma; is a finitely generated Fuchsian group such that its derived subgroup & UGamma;' is co-compact and torsion free, then S =H2/& UGamma;' is a closed Riemann surface of genus g ?, 2 admitting the abelian group A = & UGamma;/& UGamma;' as a group of conformal automorphisms. We say that A is a homology group of S. A natural question is if S admits unique homology groups or not, in other words, if there are different Fuchsian groups & UGamma;1 and & UGamma;2 with & UGamma;'1 = & UGamma;'2? It is known that if & UGamma;1 and & UGamma;2 are both of the same signature (0; k, ... , k), for some k ?, 2, then the equality & UGamma;'1 = & UGamma;'2 ensures that & UGamma;1 = & UGamma;2. Generalizing this, we observe that if & UGamma;j has signature (0; kj, ..., kj) and & UGamma;'1 = & UGamma;'2, then & UGamma;1 = & UGamma;2. We also provide examples of surfaces S with different homology groups. A description of the normalizer in Aut(S) of each homology group A is also obtained.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 50 条
  • [21] Dihedral Groups of Order 2p of Automorphisms of Compact Riemann Surfaces of Genus p-1
    Yang, Qingjie
    Zhong, Weiting
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (01): : 196 - 206
  • [22] AUTOMORPHISMS OF THE GERSTEN GROUP
    Dudkin, F. A.
    Shaporina, E. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (03) : 413 - 422
  • [23] Automorphisms of the Gersten Group
    F. A. Dudkin
    E. A. Shaporina
    Siberian Mathematical Journal, 2021, 62 : 413 - 422
  • [24] On group ring automorphisms
    Hertweck, M
    Nebe, G
    ALGEBRAS AND REPRESENTATION THEORY, 2004, 7 (02) : 189 - 210
  • [25] The automorphisms of the Cremona group
    Deserti, Julie
    COMPOSITIO MATHEMATICA, 2006, 142 (06) : 1459 - 1478
  • [26] Automorphisms of C* Moduli Spaces Associated to a Riemann Surface
    Baraglia, David
    Biswas, Indranil
    Schaposnik, Laura P.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [27] Automorphisms of Group Extensions
    Robinson, Derek J. S.
    NOTE DI MATEMATICA, 2013, 33 (01): : 121 - 129
  • [28] On Group Ring Automorphisms
    Martin Hertweck
    Gabriele Nebe
    Algebras and Representation Theory, 2004, 7 : 189 - 210
  • [29] On automorphisms of Enriques surfaces and their entropy
    Matsumoto, Yuya
    Ohashi, Hisanori
    Rams, Slawomir
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (13) : 2084 - 2098
  • [30] Crystallography and Riemann surfaces
    Elser, V
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (03) : 445 - 476