Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives

被引:24
作者
Bravo-Vazquez, Luis Alberto [1 ]
Mendez-Garcia, Andrea [1 ]
Rodriguez, Alma L. L. [1 ]
Sahare, Padmavati [2 ]
Pathak, Surajit [3 ]
Banerjee, Antara [3 ]
Duttaroy, Asim K. K. [4 ]
Paul, Sujay [1 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Queretaro, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Neurobiol, Queretaro, Mexico
[3] Chettinad Hosp & Res Inst CHRI, Chettinad Acad Res & Educ CARE, Dept Med Biotechnol, Fac Allied Hlth Sci, Chennai, India
[4] Univ Oslo, Inst Basic Med Sci, Fac Med, Dept Nutr, Oslo, Norway
基金
英国科研创新办公室;
关键词
MicroRNAs; cancer; nanoparticles; therapeutics; gene regulation; targeted delivery; BREAST-CANCER; CO-DELIVERY; SILICA NANOPARTICLES; THERAPY; SUPPRESSES; CELLS; LIVER; NANOMEDICINE; OXALIPLATIN; LUNG;
D O I
10.3389/fbioe.2023.1208547
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
引用
收藏
页数:21
相关论文
共 142 条
[61]   Co-delivery of curcumin and miRNA-144-3p using heart-targeted extracellular vesicles enhances the therapeutic efficacy for myocardial infarction [J].
Kang, Ji-Young ;
Kim, Hyoeun ;
Mun, Dasom ;
Yun, Nuri ;
Joung, Boyoung .
JOURNAL OF CONTROLLED RELEASE, 2021, 331 :62-73
[62]   Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers [J].
Kang, Tianyi ;
Ni, Jen-Shyang ;
Li, Tingting ;
Wang, Jun ;
Li, Zeshun ;
Li, Yaxi ;
Zha, Menglei ;
Zhang, Chen ;
Wu, Xue ;
Guo, Heng ;
Xi, Lei ;
Li, Kai .
BIOMATERIALS, 2021, 275
[63]   RNAi-based therapeutics and tumor targeted delivery in cancer [J].
Kara, Goknur ;
Calin, George A. ;
Ozpolat, Bulent .
ADVANCED DRUG DELIVERY REVIEWS, 2022, 182
[64]   Efficiency of the Green Synthesized Nanoparticles as New Tools in Cancer Therapy: Insights on Plant-Based Bioengineered Nanoparticles, Biophysical Properties, and Anticancer Roles [J].
Karmous, Ines ;
Pandey, Ashish ;
Ben Haj, Khemais ;
Chaoui, Abdelilah .
BIOLOGICAL TRACE ELEMENT RESEARCH, 2020, 196 (01) :330-342
[65]   Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies [J].
Kashkooli, Farshad Moradi ;
Soltani, M. ;
Souri, Mohammad .
JOURNAL OF CONTROLLED RELEASE, 2020, 327 :316-349
[66]   Next-generation probiotics - do they open new therapeutic strategies for cancer patients? [J].
Kazmierczak-Siedlecka, Karolina ;
Skonieczna-Zydecka, Karolina ;
Hupp, Theodore ;
Duchnowska, Renata ;
Marek-Trzonkowska, Natalia ;
Polom, Karol .
GUT MICROBES, 2022, 14 (01)
[67]   Targeting cancer energy metabolism: a potential systemic cure for cancer [J].
Kim, Soo-Youl .
ARCHIVES OF PHARMACAL RESEARCH, 2019, 42 (02) :140-149
[68]   Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer [J].
Kobayashi, Masaki ;
Sawada, Kenjiro ;
Miyamoto, Mayuko ;
Shimizu, Aasa ;
Yamamoto, Misa ;
Kinose, Yasuto ;
Nakamura, Koji ;
Kawano, Mahiru ;
Kodama, Michiko ;
Hashimoto, Kae ;
Kimura, Tadashi .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 527 (01) :153-161
[69]   Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy [J].
Kranz, Lena M. ;
Diken, Mustafa ;
Haas, Heinrich ;
Kreiter, Sebastian ;
Loquai, Carmen ;
Reuter, Kerstin C. ;
Meng, Martin ;
Fritz, Daniel ;
Vascotto, Fulvia ;
Hefesha, Hossam ;
Grunwitz, Christian ;
Vormehr, Mathias ;
Huesemann, Yves ;
Selmi, Abderraouf ;
Kuhn, Andreas N. ;
Buck, Janina ;
Derhovanessian, Evelyna ;
Rae, Richard ;
Attig, Sebastian ;
Diekmann, Jan ;
Jabulowsky, Robert A. ;
Heesch, Sandra ;
Hassel, Jessica ;
Langguth, Peter ;
Grabbe, Stephan ;
Huber, Christoph ;
Tuereci, Oezlem ;
Sahin, Ugur .
NATURE, 2016, 534 (7607) :396-+
[70]   TRAILblazing Strategies for Cancer Treatment [J].
Kretz, Anna-Laura ;
Trauzold, Anna ;
Hillenbrand, Andreas ;
Knippschild, Uwe ;
Henne-Bruns, Doris ;
von Karstedt, Silvia ;
Lemke, Johannes .
CANCERS, 2019, 11 (04)