Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives

被引:24
作者
Bravo-Vazquez, Luis Alberto [1 ]
Mendez-Garcia, Andrea [1 ]
Rodriguez, Alma L. L. [1 ]
Sahare, Padmavati [2 ]
Pathak, Surajit [3 ]
Banerjee, Antara [3 ]
Duttaroy, Asim K. K. [4 ]
Paul, Sujay [1 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Queretaro, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Neurobiol, Queretaro, Mexico
[3] Chettinad Hosp & Res Inst CHRI, Chettinad Acad Res & Educ CARE, Dept Med Biotechnol, Fac Allied Hlth Sci, Chennai, India
[4] Univ Oslo, Inst Basic Med Sci, Fac Med, Dept Nutr, Oslo, Norway
基金
英国科研创新办公室;
关键词
MicroRNAs; cancer; nanoparticles; therapeutics; gene regulation; targeted delivery; BREAST-CANCER; CO-DELIVERY; SILICA NANOPARTICLES; THERAPY; SUPPRESSES; CELLS; LIVER; NANOMEDICINE; OXALIPLATIN; LUNG;
D O I
10.3389/fbioe.2023.1208547
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
引用
收藏
页数:21
相关论文
共 142 条
[21]   MicroRNAs and long non-coding RNAs in pancreatic cancer: From epigenetics to potential clinical applications [J].
Bravo-Vazquez, Luis Alberto ;
Frias-Reid, Natalia ;
Ramos-Delgado, Ana Gabriela ;
Osorio-Perez, Sofia Madeline ;
Zlotnik-Chavez, Hania Ruth ;
Pathak, Surajit ;
Banerjee, Antara ;
Bandyopadhyay, Anindya ;
Duttaroy, Asim K. ;
Paul, Sujay .
TRANSLATIONAL ONCOLOGY, 2023, 27
[22]   Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review [J].
Bravo-Vazquez, Luis Alberto ;
Medina-Rios, Ixchel ;
Marquez-Gallardo, Luis David ;
Reyes-Munoz, Josue ;
Serrano-Cano, Francisco, I ;
Pathak, Surajit ;
Banerjee, Antara ;
Bandyopadhyay, Anindya ;
Duttaroy, Asim K. ;
Paul, Sujay .
DIGESTIVE DISEASES AND SCIENCES, 2023, 68 (01) :38-53
[23]   Investigating the pharmacodynamic durability o f GalNAc-siRNA conjugates [J].
Brown, Christopher R. ;
Gupta, Swati ;
Qin, June ;
Racie, Timothy ;
He, Guo ;
Lentini, Scott ;
Malone, Ryan ;
Yu, Mikyung ;
Matsuda, Shigeo ;
Shulga-Morskaya, Svetlana ;
Nair, Anil, V ;
Theile, Christopher S. ;
Schmidt, Karyn ;
Shahraz, Azar ;
Goel, Varun ;
Parmar, Rubina G. ;
Zlatev, Ivan ;
Schlegel, Mark K. ;
Nair, Jayaprakash K. ;
Jayaraman, Muthusamy ;
Manoharan, Muthiah ;
Brown, Dennis ;
Maier, Martin A. ;
Jadhav, Vasant .
NUCLEIC ACIDS RESEARCH, 2020, 48 (21) :11827-11844
[24]   Mechanisms of Multidrug Resistance in Cancer Chemotherapy [J].
Bukowski, Karol ;
Kciuk, Mateusz ;
Kontek, Renata .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (09)
[25]   Deciphering the epigenetic network in cancer radioresistance [J].
Cabrera-Licona, Ariana ;
Perez-Anorve, X. Isidro ;
Flores-Fortis, Mauricio ;
del Moral-Hernandez, Oscar ;
Rosa, H. Claudia Gonzalez-de la ;
Suarez-Sanchez, Rocio ;
Chavez-Saldana, Margarita ;
Arechaga-Ocampo, Elena .
RADIOTHERAPY AND ONCOLOGY, 2021, 159 :48-59
[26]   MiR-206 conjugated gold nanoparticle based targeted therapy in breast cancer cells [J].
Chaudhari, Ramesh ;
Nasra, Simran ;
Meghani, Nikita ;
Kumar, Ashutosh .
SCIENTIFIC REPORTS, 2022, 12 (01)
[27]   In vivo delivery of miRNAs for cancer therapy: Challenges and strategies [J].
Chen, Yunching ;
Gao, Dong-Yu ;
Huang, Leaf .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 81 :128-141
[28]   Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer [J].
Chen, Zhian ;
Liang, Yanrui ;
Feng, Xiaoli ;
Liang, Yu ;
Shen, Guodong ;
Huang, Huilin ;
Chen, Zhaoyu ;
Yu, Jiang ;
Liu, Hao ;
Lin, Tian ;
Chen, Hao ;
Wu, Dong ;
Li, Guoxin ;
Zhao, Bingxia ;
Guo, Weihong ;
Hu, Yanfeng .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 120
[29]   RNA therapeutics in the clinic [J].
Curreri, Alexander ;
Sankholkar, Disha ;
Mitragotri, Samir ;
Zhao, Zongmin .
BIOENGINEERING & TRANSLATIONAL MEDICINE, 2023, 8 (01)
[30]   The Limitless Future of RNA Therapeutics [J].
Damase, Tulsi Ram ;
Sukhovershin, Roman ;
Boada, Christian ;
Taraballi, Francesca ;
Pettigrew, Roderic I. ;
Cooke, John P. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9