Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives

被引:24
作者
Bravo-Vazquez, Luis Alberto [1 ]
Mendez-Garcia, Andrea [1 ]
Rodriguez, Alma L. L. [1 ]
Sahare, Padmavati [2 ]
Pathak, Surajit [3 ]
Banerjee, Antara [3 ]
Duttaroy, Asim K. K. [4 ]
Paul, Sujay [1 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Queretaro, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Neurobiol, Queretaro, Mexico
[3] Chettinad Hosp & Res Inst CHRI, Chettinad Acad Res & Educ CARE, Dept Med Biotechnol, Fac Allied Hlth Sci, Chennai, India
[4] Univ Oslo, Inst Basic Med Sci, Fac Med, Dept Nutr, Oslo, Norway
基金
英国科研创新办公室;
关键词
MicroRNAs; cancer; nanoparticles; therapeutics; gene regulation; targeted delivery; BREAST-CANCER; CO-DELIVERY; SILICA NANOPARTICLES; THERAPY; SUPPRESSES; CELLS; LIVER; NANOMEDICINE; OXALIPLATIN; LUNG;
D O I
10.3389/fbioe.2023.1208547
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
引用
收藏
页数:21
相关论文
共 142 条
[1]   Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy [J].
Ahir, Manisha ;
Upadhyay, Priyanka ;
Ghosh, Avijit ;
Sarker, Sushmita ;
Bhattacharya, Saurav ;
Gupta, Payal ;
Ghosh, Swatilekha ;
Chattopadhyay, Sreya ;
Adhikary, Arghya .
BIOMATERIALS SCIENCE, 2020, 8 (10) :2939-2954
[2]   The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J].
Akinc, Akin ;
Maier, Martin A. ;
Manoharan, Muthiah ;
Fitzgerald, Kevin ;
Jayaraman, Muthusamy ;
Barros, Scott ;
Ansell, Steven ;
Du, Xinyao ;
Hope, Michael J. ;
Madden, Thomas D. ;
Mui, Barbara L. ;
Semple, Sean C. ;
Tam, Ying K. ;
Ciufolini, Marco ;
Witzigmann, Dominik ;
Kulkarni, Jayesh A. ;
van der Meel, Roy ;
Cullis, Pieter R. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1084-1087
[3]   Regulatory Mechanism of MicroRNA Expression in Cancer [J].
Ali Syeda, Zainab ;
Langden, Siu Semar Saratu' ;
Munkhzul, Choijamts ;
Lee, Mihye ;
Song, Su Jung .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (05)
[4]   Regulatory landscape of nanotechnology and nanoplastics from a global perspective [J].
Allan, Jacqueline ;
Belz, Susanne ;
Hoeveler, Arnd ;
Hugas, Marta ;
Okuda, Haruhiro ;
Patri, Anil ;
Rauscher, Hubert ;
Silva, Primal ;
Slikker, William ;
Sokull-Kluettgen, Birgit ;
Tong, Weida ;
Anklam, Elke .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2021, 122
[5]   MicroRNA-219 loaded chitosan nanoparticles for treatment of glioblastoma [J].
Alswailem, Rawan ;
Alqahtani, Fulwah Yahya ;
Aleanizy, Fadilah Sfouq ;
Alrfaei, Bahauddeen M. ;
Badran, Mohammad ;
Alqahtani, Qamraa Hamad ;
Abdelhady, Hosam Gharib ;
Alsarra, Ibrahim .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2022, 50 (01) :198-207
[6]   Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems [J].
Alzhrani, Rami ;
Alsaab, Hashem O. ;
Petrovici, Alex ;
Bhise, Ketki ;
Vanamala, Kushal ;
Sau, Samaresh ;
Krinock, Matthew J. ;
Iyer, Arun K. .
DRUG DISCOVERY TODAY, 2020, 25 (04) :718-730
[7]   Inorganic nanoparticle-based advanced cancer therapies: Promising combination strategies [J].
Amaldoss, Maria John Newton ;
Yang, Jia-Lin ;
Koshy, Pramod ;
Unnikrishnan, Ashwin ;
Sorrell, Charles C. .
DRUG DISCOVERY TODAY, 2022, 27 (12)
[8]   Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer [J].
Ansari, Mohammad Azam ;
Thiruvengadam, Muthu ;
Farooqui, Zeba ;
Rajakumar, Govindaswamy ;
Jamal, Qazi Mohammad Sajid ;
Alzohairy, Mohammad A. ;
Almatroudi, Ahmad ;
Alomary, Mohammad N. ;
Chung, Ill-Min ;
Al-Suhaimi, Ebtesam Abdullah .
SEMINARS IN CANCER BIOLOGY, 2021, 69 :109-128
[9]   Biodegradable nanoparticles as drug delivery devices [J].
Anwar, Maira ;
Muhammad, Faqir ;
Akhtar, Bushra .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2021, 64
[10]   Daytime napping and risk of liver cancer: A large population-based prospective cohort study [J].
Arafa, Ahmed ;
Eshak, Ehab S. ;
Shirai, Kokoro ;
Muraki, Isao ;
Tamakoshi, Akiko ;
Iso, Hiroyasu .
ANNALS OF HEPATOLOGY, 2023, 28 (02)