Long-time behaviours of classical solutions to relativistic Euler-Poisson equations

被引:1
作者
Cheung, Ka Luen [1 ]
Wong, Sen [1 ]
Yee, Tat Leung [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po New Terr, 10 Lo Ping Rd, Hong Kong, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 05期
关键词
Subluminal condition; Relativistic Euler-Poisson equations; Finite propagation speed property; Finite-time breakdown; LOCAL SMOOTH SOLUTIONS; BLOWUP; SINGULARITIES;
D O I
10.1007/s00033-023-02070-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, long-time behaviours of classical solutions to relativistic Euler-Poisson equations in radial symmetry (REPE) are investigated. First, we establish the finite propagation speed property of the REPE system and the propagation speed sigma is found to be sigma := root 8 pi M/R(1 + e/c(2)) + c(2), where all constants are given parameters or initial data to the system. Subsequently, we show that if the initial functional integral(R)(0) v(0, r)dr is sufficiently large, then the classical solutions of the REPE will blow up on finite time, where v(0, r) is the initial velocity component of REPE and R is the radius of support of the initial mass-energy density.
引用
收藏
页数:15
相关论文
共 22 条
[1]   Blowup of regular solutions for the relativistic Euler-Poisson equations [J].
Chan, Wai Hong ;
Wong, Sen ;
Yuen, Manwai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (02) :925-936
[2]  
Chen F.F., 1984, Introduction to plasma physics and controlled fusion. Volume 1, V1, DOI [10.1007/978-1-4757-5595-4, DOI 10.1007/978-1-4757-5595-4]
[3]  
Cheung KL., 2020, J MATH ANAL APPL, V489, P14, DOI DOI 10.1016/J.JMAA.2020.124193
[4]   Global smooth solutions to relativistic Euler-Poisson equations with repulsive force [J].
Geng, Yong-cai ;
Wang, Lei .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04) :1025-1036
[5]   Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations [J].
Geng, Yongcai ;
Li, Yachun .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (02) :301-318
[6]   SINGULARITY FORMATION FOR RELATIVISTIC EULER AND EULER-POISSON EQUATIONS WITH REPULSIVE FORCE [J].
Geng, Yonggai .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (02) :549-564
[7]  
GUO Y., 1999, CONTEMP MATH-SINGAP, V238, P151, DOI DOI 10.1090/CONM/238/03545
[8]   A SYMMETRIZATION OF THE RELATIVISTIC EULER EQUATIONS WITH SEVERAL SPATIAL VARIABLES [J].
LeFloch, Philippe G. ;
Ukai, Seiji .
KINETIC AND RELATED MODELS, 2009, 2 (02) :275-292
[9]  
Lions Pierre-Louis., 1998, Mathematical Topics in Fluid Mechanics. Volume 1: Incompressible Models, V1
[10]   Existence and Non-linear Stability of Rotating Star Solutions of the Compressible Euler-Poisson Equations [J].
Luo, Tao ;
Smoller, Joel .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 191 (03) :447-496