Geometric Reliability of Super-Resolution Reconstructed Images from Clinical Fetal MRI in the Second Trimester

被引:3
作者
Ciceri, Tommaso [1 ,2 ]
Squarcina, Letizia [3 ]
Pigoni, Alessandro [4 ,5 ]
Ferro, Adele [5 ]
Montano, Florian [1 ]
Bertoldo, Alessandra [2 ,8 ]
Persico, Nicola [6 ]
Boito, Simona [6 ]
Triulzi, Fabio Maria [3 ,7 ]
Conte, Giorgio [3 ,7 ]
Brambilla, Paolo [3 ,5 ]
Peruzzo, Denis [1 ]
机构
[1] Sci Inst IRCCS Eugenio Medea, NeuroImaging Lab, Bosisio Parini, Italy
[2] Univ Padua, Dept Informat Engn, Padua, Italy
[3] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
[4] IMT Sch Adv Studies Lucca, Social & Affect Neurosci Grp, Lucca, Italy
[5] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Dept Neurosci & Mental Hlth, Milan, Italy
[6] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Dept Woman Child & Newborn, Milan, Italy
[7] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Dept Serv & Prevent Med, Milan, Italy
[8] Univ Padua, Padova Neurosci Ctr, Padua, Italy
关键词
Fetal brain; Magnetic Resonance Imaging; Super-Resolution Algorithm; Fetal biometry; Pediatric Imaging; VOLUME RECONSTRUCTION; MOTION CORRECTION; BRAIN MRI; BIOMETRY;
D O I
10.1007/s12021-023-09635-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fetal Magnetic Resonance Imaging (MRI) is an important noninvasive diagnostic tool to characterize the central nervous system (CNS) development, significantly contributing to pregnancy management. In clinical practice, fetal MRI of the brain includes the acquisition of fast anatomical sequences over different planes on which several biometric measurements are manually extracted. Recently, modern toolkits use the acquired two-dimensional (2D) images to reconstruct a Super-Resolution (SR) isotropic volume of the brain, enabling three-dimensional (3D) analysis of the fetal CNS.We analyzed 17 fetal MR exams performed in the second trimester, including orthogonal T2-weighted (T2w) Turbo Spin Echo (TSE) and balanced Fast Field Echo (b-FFE) sequences. For each subject and type of sequence, three distinct high-resolution volumes were reconstructed via NiftyMIC, MIALSRTK, and SVRTK toolkits. Fifteen biometric measurements were assessed both on the acquired 2D images and SR reconstructed volumes, and compared using Passing-Bablok regression, Bland-Altman plot analysis, and statistical tests.Results indicate that NiftyMIC and MIALSRTK provide reliable SR reconstructed volumes, suitable for biometric assessments. NiftyMIC also improves the operator intraclass correlation coefficient on the quantitative biometric measures with respect to the acquired 2D images. In addition, TSE sequences lead to more robust fetal brain reconstructions against intensity artifacts compared to b-FFE sequences, despite the latter exhibiting more defined anatomical details.Our findings strengthen the adoption of automatic toolkits for fetal brain reconstructions to perform biometry evaluations of fetal brain development over common clinical MR at an early pregnancy stage.
引用
收藏
页码:549 / 563
页数:15
相关论文
共 43 条
[1]   Improving Fetal Head Contour Detection by Object Localisation with Deep Learning [J].
Al-Bander, Baidaa ;
Alzahrani, Theiab ;
Alzahrani, Saeed ;
Williams, Bryan M. ;
Zheng, Yalin .
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2019, 2020, 1065 :142-150
[2]   PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI [J].
Alansary, Amir ;
Rajchl, Martin ;
McDonagh, Steven G. ;
Murgasova, Maria ;
Damodaram, Mellisa ;
Lloyd, David F. A. ;
Davidson, Alice ;
Rutherford, Mary ;
Hajnal, Joseph V. ;
Rueckert, Daniel ;
Kainz, Bernhard .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (10) :2031-2044
[3]   Fetal Brain MRI Measurements Using a Deep Learning Landmark Network with Reliability Estimation [J].
Avisdris, Netanell ;
Ben Bashat, Dafna ;
Ben-Sira, Liat ;
Joskowicz, Leo .
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 :210-220
[4]   Automatic linear measurements of the fetal brain on MRI with deep neural networks [J].
Avisdris, Netanell ;
Yehuda, Bossmat ;
Ben-Zvi, Ori ;
Link-Sourani, Daphna ;
Ben-Sira, Liat ;
Miller, Elka ;
Zharkov, Elena ;
Ben Bashat, Dafna ;
Joskowicz, Leo .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) :1481-1492
[5]  
Bland JM, 1999, STAT METHODS MED RES, V8, P135, DOI 10.1177/096228029900800204
[6]   Validation of FreeSurfer-Estimated Brain Cortical Thickness: Comparison with Histologic Measurements [J].
Cardinale, Francesco ;
Chinnici, Giuseppa ;
Bramerio, Manuela ;
Mai, Roberto ;
Sartori, Ivana ;
Cossu, Massimo ;
Lo Russo, Giorgio ;
Castana, Laura ;
Colombo, Nadia ;
Caborni, Chiara ;
De Momi, Elena ;
Ferrigno, Giancarlo .
NEUROINFORMATICS, 2014, 12 (04) :535-542
[7]   Prenatal Brain MR Imaging: Reference Linear Biometric Centiles between 20 and 24 Gestational Weeks [J].
Conte, G. ;
Milani, S. ;
Palumbo, G. ;
Talenti, G. ;
Boito, S. ;
Rustico, M. ;
Triulzi, F. ;
Righini, A. ;
Izzo, G. ;
Doneda, C. ;
Zolin, A. ;
Parazzini, C. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (05) :963-967
[8]   An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI [J].
Ebner, Michael ;
Wang, Guotai ;
Li, Wenqi ;
Aertsen, Michael ;
Patel, Premal A. ;
Aughwane, Rosalind ;
Melbourne, Andrew ;
Doel, Tom ;
Dymarkowski, Steven ;
De Coppi, Paolo ;
David, Anna L. ;
Deprest, Jan ;
Ourselin, Sebastien ;
Vercauteren, Tom .
NEUROIMAGE, 2020, 206
[9]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[10]   Fetal cerebral biometry: normal parenchymal findings and ventricular size [J].
Garel, C .
EUROPEAN RADIOLOGY, 2005, 15 (04) :809-813