Thermal cycling performance assessment of double-layered lanthanum titanium aluminate thermal barrier coatings developed using plasma spheroidized powders

被引:7
作者
Praveen, K. [1 ]
Shanmugavelayutham, G. [2 ]
Rao, D. Srinivasa [1 ]
Sivakumar, G. [1 ]
机构
[1] Int Adv Res Ctr Powder Met & New Mat ARCI, Ctr Engn Coatings, Hyderabad 500005, Telangana, India
[2] Bharathiar Univ, Dept Phys, Plasma Proc Lab, Coimbatore 641046, Tamil Nadu, India
关键词
Lanthanum titanium aluminate; Spheroidization; Thermal barrier coatings; Plasma; Thermally grown oxide; FAILURE MECHANISMS; SHOCK BEHAVIOR; OXIDE; HEXAALUMINATE; DURABILITY; SUSPENSION; THICKNESS; LAALO3;
D O I
10.1016/j.surfcoat.2023.129588
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this present investigation, lanthanum titanium aluminate (LTA) powder is prepared by solid-state sintering followed by spheroidization through an atmospheric plasma spray torch within a spheroidization chamber. The spheroidized powder is used to deposit thermal barrier coatings (TBCs). The developed coatings were evaluated for thermal cycling performance at 1150 degrees C, and the phase and microstructural observations were carried out before and after thermal cycling. A continuous layer of alumina (Al2O3) thermally grown oxide (TGO) is grown at the interface of the NiCoCrAlY bond coat and YSZ top coat in both coatings. The higher TGO growth rate kinetics beyond the critical thickness-induced thermal stresses and the associated coefficient of thermal expansion (CTE) mismatch between the TGO and the top coat resulted in the delamination of the coatings.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness [J].
Ahrens, M ;
Vassen, R ;
Stöver, D .
SURFACE & COATINGS TECHNOLOGY, 2002, 161 (01) :26-35
[2]  
Boulos Maher., 2004, Metal Powder Report, V59, P16, DOI [DOI 10.1016/S0026-0657, 10.1016/S0026-0657(04)00153-5, DOI 10.1016/S0026-0657(04)00153-5]
[3]   Synthesis and applications of porous non-silica metal oxide submicrospheres [J].
Boyjoo, Yash ;
Wang, Meiwen ;
Pareek, Vishnu K. ;
Liu, Jian ;
Jaroniec, Mietek .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (21) :6013-6047
[4]   Thermal-barrier coatings for more efficient gas-turbine engines [J].
Clarke, David R. ;
Oechsner, Matthias ;
Padture, Nitin P. .
MRS BULLETIN, 2012, 37 (10) :891-902
[5]   Effect of TGO Thickness on Thermal Cyclic Lifetime and Failure Mode of Plasma- Sprayed TBCs [J].
Dong, Hui ;
Yang, Guan-Jun ;
Li, Cheng-Xin ;
Luo, Xiao-Tao ;
Li, Chang-Jiu .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (04) :1226-1232
[6]   Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass [J].
Drexler, Julie M. ;
Ortiz, Angel L. ;
Padture, Nitin P. .
ACTA MATERIALIA, 2012, 60 (15) :5437-5447
[7]   Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass [J].
Drexler, Julie M. ;
Chen, Chun-Hu ;
Gledhill, Andrew D. ;
Shinoda, Kentaro ;
Sampath, Sanjay ;
Padture, Nitin P. .
SURFACE & COATINGS TECHNOLOGY, 2012, 206 (19-20) :3911-3916
[8]   Mechanisms controlling the durability of thermal barrier coatings [J].
Evans, AG ;
Mumm, DR ;
Hutchinson, JW ;
Meier, GH ;
Pettit, FS .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (05) :505-553
[9]   Mechanics-based scaling laws for the durability of thermal barrier coatings [J].
Evans, AG ;
He, MY ;
Hutchinson, JW .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (3-4) :249-271
[10]   Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review [J].
Fauchais, P. ;
Montavon, G. ;
Lima, R. S. ;
Marple, B. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (09)