2D materials readiness for the transistor performance breakthrough

被引:17
作者
Zhang, Qing [1 ]
Liu, Chunsen [1 ,2 ]
Zhou, Peng [1 ,2 ]
机构
[1] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
[2] Fudan Univ, Frontier Inst Chip & Syst, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
FIELD-EFFECT TRANSISTORS; MOS2; TRANSISTORS; 2-DIMENSIONAL MATERIALS; DATA-STORAGE; INTEGRATION; TRANSPORT; CONTACTS; MEMORY;
D O I
10.1016/j.isci.2023.106673
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the size of the transistor scales down, this strategy has confronted challenges because of the fundamental limits of silicon materials. Besides, more and more energy and time are consumed by the data transmission out of transistor computing because of the speed mismatching between the computing and memory. To meet the energy efficiency demands of big data computing, the transistor should have a smaller feature size and store data faster to overcome the energy burden of computing and data transfer. Electron transport in two-dimensional (2D) materials is constrained within a 2D plane and different materials are assembled by the van der Waals force. Owning to the atomic thickness and dangling-bond-free surface, 2D materials have demonstrated advantages in transistor scaling-down and heterogeneous structure innovation. In this review, from the performance breakthrough of 2D transistors, we discuss the opportunities, progress and challenges of 2D materials in transistor applications.
引用
收藏
页数:15
相关论文
共 104 条
[1]   Electrical contacts to two-dimensional semiconductors [J].
Allain, Adrien ;
Kang, Jiahao ;
Banerjee, Kaustav ;
Kis, Andras .
NATURE MATERIALS, 2015, 14 (12) :1195-1205
[2]   GENERALIZED SCALING THEORY AND ITS APPLICATION TO A 1/4 MICROMETER MOSFET DESIGN [J].
BACCARANI, G ;
WORDEMAN, MR ;
DENNARD, RH .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1984, 31 (04) :452-462
[3]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[4]  
Barraud S., 2020, 7 LEVELS STACKED NAN
[5]   Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures [J].
Bertolazzi, Simone ;
Krasnozhon, Daria ;
Kis, Andras .
ACS NANO, 2013, 7 (04) :3246-3252
[6]   Multibit Data Storage States Formed in Plasma-Treated MoS2 Transistors [J].
Chen, Mikai ;
Nam, Hongsuk ;
Wi, Sungjin ;
Priessnitz, Greg ;
Gunawan, Ivan Manuel ;
Liang, Xiaogan .
ACS NANO, 2014, 8 (04) :4023-4032
[7]   Temperature-switching logic in MoS2 single transistors [J].
Chen, Xiaozhang ;
Gu, Lehua ;
Liu, Lan ;
Chen, Huawei ;
Li, Jingyu ;
Liu, Chunsen ;
Zhou, Peng .
CHINESE PHYSICS B, 2020, 29 (09)
[8]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats.2016.52, 10.1038/natrevmats2016.52]
[9]   Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices [J].
Choi, Min Sup ;
Lee, Gwan-Hyoung ;
Yu, Young-Jun ;
Lee, Dae-Yeong ;
Lee, Seung Hwan ;
Kim, Philip ;
Hone, James ;
Yoo, Won Jong .
NATURE COMMUNICATIONS, 2013, 4
[10]   Antimony Semimetal Contact with Enhanced Thermal Stability for High Performance 2D Electronics [J].
Chou, Ang-Sheng ;
Wu, Tong ;
Cheng, Chao-Ching ;
Zhan, Shun-Siang ;
Ni, I-Chih ;
Wang, Shih-Yun ;
Chang, Yu-Chen ;
Liew, San-Lin ;
Chen, Edward ;
Chang, Wen-Hao ;
Wu, Chih-, I ;
Cai, Jin ;
Wong, H-S Philip ;
Wang, Han .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,