Worm Domains are not Gromov Hyperbolic

被引:4
作者
Arosio, Leandro [1 ]
Dall'Ara, Gian Maria [2 ]
Fiacchi, Matteo [3 ]
机构
[1] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[2] Ist Nazl Alta Matemat F Severi, Res Unit SNS Pisa, Rome, Italy
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
基金
欧洲研究理事会;
关键词
Worm domain; Gromov hyperbolicity; Kobayashi metric; Scaling; PSEUDOCONVEX DOMAINS; CONVEX DOMAINS;
D O I
10.1007/s12220-023-01320-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Worm domains are not Gromov hyperbolic with respect to the Kobayashi distance.
引用
收藏
页数:16
相关论文
共 19 条
[1]   Diederich-Fornaess and Steinness Indices for Abstract CR Manifolds [J].
Adachi, Masanori ;
Yum, Jihun .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) :8385-8413
[2]   Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains [J].
Balogh, ZM ;
Bonk, M .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) :504-533
[3]  
Baouendi MS., 1999, REAL SUBMANIFOLDS CO
[4]  
Barrett D. E., 1998, CONT MATH, V212, P1
[5]   BEHAVIOR OF THE BERGMAN PROJECTION ON THE DIEDERICH-FORNAESS WORM [J].
BARRETT, DE .
ACTA MATHEMATICA, 1992, 168 (1-2) :1-10
[6]   CONSTRUCTION OF PEAK FUNCTIONS ON WEAKLY PSEUDOCONVEX DOMAINS [J].
BEDFORD, E ;
FORNAESS, JE .
ANNALS OF MATHEMATICS, 1978, 107 (03) :555-568
[7]  
Bracci F, 2022, Arxiv, DOI arXiv:1810.11389
[8]  
Bridson Martin R, 2013, Metric Spaces of Non-positive Curvature, V319
[9]  
Dall'Ara GM, 2023, Arxiv, DOI arXiv:2305.17439
[10]  
DIEDERICH K, 1977, MATH ANN, V225, P275, DOI 10.1007/BF01425243