Nonlinear Schrodinger Approximation for the Electron Euler-Poisson Equation

被引:0
|
作者
Liu, Huimin [1 ]
Pu, Xueke [2 ]
机构
[1] Shanxi Univ Finance & Econ, Fac Appl Math, Taiyuan 030006, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation approximation; Nonlinear Schrodinger equation; Electron Euler-Poisson equation; LONG-TIME SOLUTIONS; MODULATION APPROXIMATION; NLS APPROXIMATION; JUSTIFICATION; VALIDITY;
D O I
10.1007/s11401-023-0020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear Schrodinger (NLS for short) equation plays an important role in describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet. In this paper, the authors study the NLS approximation by providing rigorous error estimates in Sobolev spaces for the electron Euler-Poisson equation, an important model to describe Langmuir waves in a plasma. They derive an approximate wave packet-like solution to the evolution equations by the multiscale analysis, then they construct the modified energy functional based on the quadratic terms and use the rotating coordinate transform to obtain uniform estimates of the error between the true and approximate solutions.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 50 条
  • [41] THE NONLINEAR SCHRODINGER EQUATION ON THE HALF-LINE
    Fokas, Athanassios S.
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (01) : 681 - 709
  • [42] Nonlinear Schrodinger Equation with Delay and Its Regularization
    Sakbaev, V. Zh.
    Shiryaeva, A. D.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 936 - 949
  • [43] Statistical equilibrium states for the nonlinear Schrodinger equation
    Jordan, R
    Josserand, C
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (4-6) : 433 - 447
  • [44] A note on the nonlinear Schrodinger equation in a general domain
    Hayashi, Masayuki
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 173 : 99 - 122
  • [45] Singular solutions of the subcritical nonlinear Schrodinger equation
    Fibich, Gadi
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (13) : 1119 - 1122
  • [46] Explicit breather solution of the nonlinear Schrodinger equation
    Conte, R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 209 (01) : 1357 - 1366
  • [47] On the vortices for the nonlinear Schrodinger equation in higher dimensions
    Feng, Wen
    Stanislavova, Milena
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2117):
  • [48] Explicit Symplectic Methods for the Nonlinear Schrodinger Equation
    Guan, Hua
    Jiao, Yandong
    Liu, Ju
    Tang, Yifa
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (03) : 639 - 654
  • [49] Model order reduction for nonlinear Schrodinger equation
    Karasozen, Bolent
    Akkoyunlu, Canan
    Uzunca, Murat
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 509 - 519
  • [50] On the reflection of solitons of the cubic nonlinear Schrodinger equation
    Katsaounis, Theodoros
    Mitsotakis, Dimitrios
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 1013 - 1018