Nonlinear Schrodinger Approximation for the Electron Euler-Poisson Equation

被引:0
|
作者
Liu, Huimin [1 ]
Pu, Xueke [2 ]
机构
[1] Shanxi Univ Finance & Econ, Fac Appl Math, Taiyuan 030006, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation approximation; Nonlinear Schrodinger equation; Electron Euler-Poisson equation; LONG-TIME SOLUTIONS; MODULATION APPROXIMATION; NLS APPROXIMATION; JUSTIFICATION; VALIDITY;
D O I
10.1007/s11401-023-0020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear Schrodinger (NLS for short) equation plays an important role in describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet. In this paper, the authors study the NLS approximation by providing rigorous error estimates in Sobolev spaces for the electron Euler-Poisson equation, an important model to describe Langmuir waves in a plasma. They derive an approximate wave packet-like solution to the evolution equations by the multiscale analysis, then they construct the modified energy functional based on the quadratic terms and use the rotating coordinate transform to obtain uniform estimates of the error between the true and approximate solutions.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 50 条
  • [21] Geometric integrators for the nonlinear Schrodinger equation
    Islas, AL
    Karpeev, DA
    Schober, CM
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (01) : 116 - 148
  • [22] Solution of the nonlinear Schrodinger equation (1
    Segovia Chaves, Francis
    Cabrera, Emilse
    REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2015, 6 (02): : 26 - 32
  • [23] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [24] REMARKS ON THE DAMPED NONLINEAR SCHRODINGER EQUATION
    Saanouni, Tarek
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 721 - 732
  • [25] Nonlinear Schrodinger Equation and the Hyperbolization Method
    Yunakovsky, A. D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (07) : 1112 - 1130
  • [26] A relaxation scheme for the nonlinear Schrodinger equation
    Besse, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 934 - 952
  • [27] Comparison of soliton solutions of the nonlinear Schrodinger equation and the nonlinear amplitude equation
    Dakova, A.
    Dakova, D.
    Kovachev, L.
    18TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2015, 9447
  • [28] SCATTERING FOR A NONLINEAR SCHRODINGER EQUATION WITH A POTENTIAL
    Hong, Younghun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1571 - 1601
  • [29] Nonlinear Schrodinger equation and DNA dynamics
    Zdravkovic, Slobodan
    Sataric, Miljko V.
    PHYSICS LETTERS A, 2008, 373 (01) : 126 - 132
  • [30] Nonlinear Schrodinger equation for the twisted Laplacian
    Ratnakumar, P. K.
    Sohani, Vijay Kumar
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (01) : 1 - 27