Hierarchical federated learning with global differential privacy

被引:0
作者
Long, Youqun [1 ]
Zhang, Jianhui [2 ]
Wang, Gaoli [1 ]
Fu, Jie [1 ]
机构
[1] East China Normal Univ, Software Engn Inst, Shanghai, Peoples R China
[2] Shandong Luruan Digital Technol Co Ltd, R&D Ctr, Jinan, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 07期
基金
中国国家自然科学基金;
关键词
differential privacy; federated learning; hierarchical architecture; privacy preservation; distributed network;
D O I
10.3934/era.2023190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Federated learning (FL) is a framework which is used in distributed machine learning to obtain an optimal model from clients' local updates. As an efficient design in model convergence and data communication, cloud-edge-client hierarchical federated learning (HFL) attracts more attention than the typical cloud-client architecture. However, the HFL still poses threats to clients' sensitive data by analyzing the upload and download parameters. In this paper, to address information leakage effectively, we propose a novel privacy-preserving scheme based on the concept of differential pri-vacy (DP), adding Gaussian noises to the shared parameters when uploading them to edge and cloud servers and broadcasting them to clients. Our algorithm can obtain global differential privacy with adjustable noises in the architecture. We evaluate the performance on image classification tasks. In our experiment on the Modified National Institute of Standards and Technology (MNIST) dataset, we get 91% model accuracy. Compared to the previous two-layer HFL-DP, our design is more secure while as being accurate.
引用
收藏
页码:3741 / 3758
页数:18
相关论文
共 50 条
  • [41] A Novel Approach for Differential Privacy-Preserving Federated Learning
    Elgabli, Anis
    Mesbah, Wessam
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 466 - 476
  • [42] The Effect of Quantization in Federated Learning: ARenyi Differential Privacy Perspective
    Kang, Tianqu
    Liu, Lumin
    He, Hengtao
    Zhang, Jun
    Song, S. H.
    Letaief, Khaled B.
    2024 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM 2024, 2024, : 233 - 238
  • [43] Adaptive Differential Privacy Algorithm for Federated Learning on Small Datasets
    Xia, Lei
    Yang, Huanbo
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 497 - 502
  • [44] Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning
    Tayyeh, Huda Kadhim
    AL-Jumaili, Ahmed Sabah Ahmed
    COMPUTERS, 2024, 13 (11)
  • [45] Vertically Federated Learning with Correlated Differential Privacy
    Zhao, Jianzhe
    Wang, Jiayi
    Li, Zhaocheng
    Yuan, Weiting
    Matwin, Stan
    ELECTRONICS, 2022, 11 (23)
  • [46] Decentralized Wireless Federated Learning With Differential Privacy
    Chen, Shuzhen
    Yu, Dongxiao
    Zou, Yifei
    Yu, Jiguo
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6273 - 6282
  • [47] Gradient sparsification for efficient wireless federated learning with differential privacy
    Wei, Kang
    Li, Jun
    Ma, Chuan
    Ding, Ming
    Shu, Feng
    Zhao, Haitao
    Chen, Wen
    Zhu, Hongbo
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (04)
  • [48] FL-ODP: An Optimized Differential Privacy Enabled Privacy Preserving Federated Learning
    Iqbal, Maria
    Tariq, Asadullah
    Adnan, Muhammad
    Din, Irfan Ud
    Qayyum, Tariq
    IEEE ACCESS, 2023, 11 : 116674 - 116683
  • [49] A secure and privacy preserved infrastructure for VANETs based on federated learning with local differential privacy
    Batool, Hajira
    Anjum, Adeel
    Khan, Abid
    Izzo, Stefano
    Mazzocca, Carlo
    Jeon, Gwanggil
    INFORMATION SCIENCES, 2024, 652
  • [50] Optimizing differential privacy in a federated learning framework: strategies for dynamic clipping and privacy allocation
    Liang, Zhaoxian
    Chen, Yonghong
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):