Coherent pairs of moment functionals of the second kind and associated orthogonal polynomials and Sobolev orthogonal polynomials

被引:2
|
作者
Suni, M. Hancco [1 ]
Marcato, G. A. [1 ]
Marcellan, F. [2 ]
Ranga, A. Sri [1 ]
机构
[1] UNESP Univ Estadual Paulista, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
基金
巴西圣保罗研究基金会;
关键词
Moment functionals; Orthogonal polynomials; Jacobi matrices; Semiclassical moment functionals; Sobolev orthogonal polynomials; Coherent pairs of the second kind; LINEAR FUNCTIONALS; ASYMPTOTICS; ZEROS;
D O I
10.1016/j.jmaa.2023.127118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a pair of quasi-definite moment functionals {v0, v1} we introduce the concept of coherence of the second kind in terms of an algebraic relation that the corresponding sequences of orthogonal polynomials satisfy. We characterize such moment functionals and give some illustrative examples taking into account they are semiclassical of class at most one. The relation between the corresponding monic Jacobi matrices is stated. For a pair of moment functionals satisfying the coherence property of the second kind, a Sobolev inner product is introduced. The connection formulas between the sequence of monic orthogonal polynomials associated with such a Sobolev inner product and the sequence of monic polynomials orthogonal with respect to the moment functional v0 are given.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind
    Marcellan, F.
    Ranga, A. Sri
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1127 - 1149
  • [2] Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind
    F. Marcellán
    A. Sri Ranga
    Results in Mathematics, 2017, 71 : 1127 - 1149
  • [3] Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs
    Alfaro, M
    Moreno-Balcázar, JJ
    Pérez, TE
    Piñar, MA
    Rezola, ML
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 141 - 150
  • [4] On Sobolev orthogonal polynomials with coherent pairs the Jacobi case
    Pan, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 79 (02) : 249 - 262
  • [5] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures
    Martinez-Finkelshtein, A
    Moreno-Balcazar, JJ
    Perez, TE
    Pinar, MA
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (02) : 280 - 293
  • [6] Coherent pairs of measures of the second kind on the real line and Sobolev orthogonal polynomials. An application to a Jacobi case
    Marcato, G. A.
    Marcellan, F.
    Ranga, A. Sri
    Lun, Yen Chi
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (02) : 475 - 508
  • [7] GENERALIZED COHERENT PAIRS ON THE UNIT CIRCLE AND SOBOLEV ORTHOGONAL POLYNOMIALS
    Marcellan, Francisco
    Pinzon-Cortes, Natalia C.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 96 (110): : 193 - 210
  • [8] Zeros of Sobolev orthogonal polynomials following from coherent pairs
    Meijer, HG
    de Bruin, MG
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 139 (02) : 253 - 274
  • [9] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type
    Delft Univ of Technology, Delft, Netherlands
    J Comput Appl Math, 1 (87-97):
  • [10] COHERENT PAIRS AND ZEROS OF SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS
    MEIJER, HG
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1993, 4 (02): : 163 - 176