Bifurcations and enumeration of central configurations of some planar restricted problems

被引:0
|
作者
Barros, Jean Fernandes [1 ]
机构
[1] Univ Estadual Feira De Santana UEFS, Dept Ciencias Exatas DEXA, Ave Transnordestina S-N, BR-44036900 Feira De Santana, BA, Brazil
关键词
Celestial mechanics; n-Body problem; Central configurations; Bifurcations; RELATIVE EQUILIBRIA; FINITENESS; BODIES;
D O I
10.1007/s10569-023-10127-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we count (classes of) central configurations of the restricted (5 + 1) and (4 + 1)-body problems whose primaries form either a centered square or a centered equilateral triangle. More precisely, we count the central configurations formed by the centered polygons and a body of zero mass as the value of the mass of the central body varies. For this purpose, we study the bifurcation set. In addition, we classify the bifurcations as saddle-node bifurcations.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Bifurcations of critical orbits of invariant potentials with applications to bifurcations of central configurations of the N-body problem
    Kowalczyk, Marta
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 24 : 108 - 125
  • [32] BIFURCATION OF SPATIAL CENTRAL CONFIGURATIONS FROM PLANAR ONES
    MOECKEL, R
    SIMO, C
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (04) : 978 - 998
  • [33] Planar central configurations of six bodies
    Fernandes, Antonio Carlos
    Mello, Luis Fernando
    dos Santos, Lucas Ruiz
    Vidal, Claudio
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (06)
  • [34] Planar central configurations as fixed points
    Ferrario, Davide L.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) : 277 - 291
  • [35] Planar central configurations as fixed points
    Davide L. Ferrario
    Journal of Fixed Point Theory and Applications, 2007, 2 : 277 - 291
  • [36] Families of continua of central configurations in charged problems
    Alfaro, F
    Pérez-Chavela, E
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (04): : 463 - 475
  • [37] On Co-Circular Central Configurations in the Four and Five Body-Problems for Homogeneous Force Law
    Alvarez-Ramirez, Martha
    Santos, Alan Almeida
    Vidal, Claudio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (02) : 269 - 290
  • [38] On the planar central configurations of rhomboidal and triangular four- and five-body problems
    Shoaib, Muhammad
    Kashif, Abdul Rehman
    Szucs-Csillik, Iharka
    ASTROPHYSICS AND SPACE SCIENCE, 2017, 362 (10)
  • [39] Topological bifurcations of central configurations in the N-body problem
    Perez-Chavela, Ernesto
    Rybicki, Slawomir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 690 - 698
  • [40] Bifurcations of the Spatial Central Configurations in the 5-Body Problem
    Alvarez-Ramirez, Martha
    Corbera, Motserrat
    Llibre, Jaume
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 9 - 15