A hardware system for real-time decoding of in vivo calcium imaging data

被引:3
作者
Blair, Garrett J. [1 ,2 ]
Guo, Changliang [4 ]
Zhou, Jim [1 ,3 ]
Romero-Sosa, Juan-Luis [2 ]
Izquierdo, Alicia [5 ]
Golshani, Peyman [4 ,5 ]
Cong, Jason [1 ,3 ,4 ]
Aharoni, Daniel [5 ]
Blair, Hugh T. [2 ,3 ,5 ]
Bathellier, Brice [2 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA USA
[5] Univ Calif Los Angeles, Integrat Ctr Learning & Memory, Los Angeles, CA 90095 USA
来源
ELIFE | 2023年 / 12卷
关键词
closed-loop; neural decoding; calcium imaging; Rat; DYNAMICS;
D O I
10.7554/eLife.78344
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data are typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of < 50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n = 12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n = 2) during an instrumental task from calcium fluorescence in orbitofrontal cortex. DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array hardware for real-time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.
引用
收藏
页数:28
相关论文
共 32 条
[1]   Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future [J].
Aharoni, Daniel ;
Hoogland, Tycho M. .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2019, 13
[2]   All the light that we can see: a new era in miniaturized microscopy [J].
Aharoni, Daniel ;
Khakh, Baljit S. ;
Silva, Alcino J. ;
Golshani, Peyman .
NATURE METHODS, 2019, 16 (01) :11-13
[3]   Hippocampal Sharp Wave-Ripple: A Cognitive Biomarker for Episodic Memory and Planning [J].
Buzsaki, Gyoergy .
HIPPOCAMPUS, 2015, 25 (10) :1073-1188
[4]   A shared neural ensemble links distinct contextual memories encoded close in time [J].
Cai, Denise J. ;
Aharoni, Daniel ;
Shuman, Tristan ;
Shobe, Justin ;
Biane, Jeremy ;
Song, Weilin ;
Wei, Brandon ;
Veshkini, Michael ;
La-Vu, Mimi ;
Lou, Jerry ;
Flores, Sergio E. ;
Kim, Isaac ;
Sano, Yoshitake ;
Zhou, Miou ;
Baumgaertel, Karsten ;
Lavi, Ayal ;
Kamata, Masakazu ;
Tuszynski, Mark ;
Mayford, Mark ;
Golshani, Peyman ;
Silva, Alcino J. .
NATURE, 2016, 534 (7605) :115-+
[5]  
Center for Brains Minds Machines, 2022, SINGL UN SPIK RAT RU
[6]  
Chen Z, 2019, 27 ACMSIGDA INT S FI
[7]  
Chen Z., 2023, SOFTWARE HERITAGE
[8]   Efficient Kernels for Real-Time Position Decoding from In Vivo Calcium Images [J].
Chen, Zhe ;
Zhou, Jim ;
Blair, Garrett J. ;
Blair, Hugh T. ;
Cong, Jason .
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, :1872-1876
[9]  
Chen Z, 2022, Arxiv, DOI arXiv:2212.04736
[10]   High-performance calcium sensors for imaging activity in neuronal populations and microcompartments [J].
Dana, Hod ;
Sun, Yi ;
Mohar, Boaz ;
Hulse, Brad K. ;
Kerlin, Aaron M. ;
Hasseman, Jeremy P. ;
Tsegaye, Getahun ;
Tsang, Arthur ;
Wong, Allan ;
Patel, Ronak ;
Macklin, John J. ;
Chen, Yang ;
Konnerth, Arthur ;
Jayaraman, Vivek ;
Looger, Loren L. ;
Schreiter, Eric R. ;
Svoboda, Karel ;
Kim, Douglas S. .
NATURE METHODS, 2019, 16 (07) :649-+