Pore surface engineering of covalent organic framework membrane by alkyl chains for lithium based batteries

被引:21
作者
Bian, Shuyang [1 ]
Huang, Guoji [1 ]
Xuan, Yufeng [1 ]
He, Boying [1 ]
Liu, Jincheng [1 ]
Xu, Bingqing [1 ]
Zhang, Gen [1 ,2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Soft Chem & Funct Mat, Minist Educ, Nanjing 210094, Jiangsu, Peoples R China
[2] Lanzhou Univ, Chinese Acad Med Sci, Sch Basic Med Sci, Key Lab Preclin Study New Drugs Gansu Prov, 2019RU066, Lanzhou 730000, Peoples R China
[3] Lanzhou Univ, Chinese Acad Med Sci, Res Unit Peptide Sci, 2019RU066, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
COF Nanosheet; COF membrane; Side chain engineering; Lithium-ion battery; Lithium-sulfur battery;
D O I
10.1016/j.memsci.2022.121268
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Fabrication of thinner, mechanically, and chemically stable separators is desirable and can maximize the energy density of lithium batteries. Covalent organic frameworks (COFs) as functional porous materials with tunable structures and designable properties are alternative materials for the construction of battery separators, but their powder state limits the possibility of further processing into ultrathin membranes. In this work, we developed a side-chain engineering strategy to tune the interlayer distance of COFs to facilitate exfoliation processing by mild mechanical force. A large number of uniform micron-scale nanosheets can be obtained by ball-milling of COF gel, and COF-C16/PE composite membrane (similar to 9 mu m thick) with good chemical and mechanical stability can be fabricated through a vacuum-assisted self-assembly process. The COF-C16/PE composite membrane assembled Li-LiFePO4 batteries delivered cycle stability over 850 cycles at 1.0C with a discharge capacity of 128 mAh/g. Furthermore, the COF-C16/PE composite membrane can serve as an efficient separator to inhibit polysulfide shuttle, and the capacity retained 580 mAh/g after 100 cycles at 0.2C in Li-S batteries. We further implemented such a membrane in a quasi-solid battery system, which also demonstrated stable cycling. This work opens up a new avenue for fabricating thin and stable membranes for high-energy-density lithium batteries.
引用
收藏
页数:7
相关论文
共 42 条
[1]   Cathode supported solid lithium batteries enabling high energy density and stable cyclability [J].
Bi, Zhijie ;
Mu, Shuang ;
Zhao, Ning ;
Sun, Wuhui ;
Huang, Weilin ;
Guo, Xiangxin .
ENERGY STORAGE MATERIALS, 2021, 35 :512-519
[2]   Charge Separation by Imidazole and Sulfonic Acid-Functionalized Covalent Organic Frameworks for Enhanced Proton Conductivity [J].
Bian, Shuyang ;
Zhang, Kun ;
Wang, Yuxiang ;
Liu, Ziya ;
Wang, Guixiang ;
Jiang, Xinzhu ;
Pan, Yaoyao ;
Xu, Bingqing ;
Huang, Guoji ;
Zhang, Gen .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (01) :1298-1304
[3]   Weakly Humidity-Dependent Proton-Conducting COF Membranes [J].
Cao, Li ;
Wu, Hong ;
Cao, Yu ;
Fan, Chunyang ;
Zhao, Rui ;
He, Xueyi ;
Yang, Pengfei ;
Shi, Benbing ;
You, Xinda ;
Jiang, Zhongyi .
ADVANCED MATERIALS, 2020, 32 (52)
[4]   Phosphoric Acid Loaded Azo (-N=N-) Based Covalent Organic Framework for Proton Conduction [J].
Chandra, Suman ;
Kundu, Tanay ;
Kandambeth, Sharath ;
BabaRao, Ravichandar ;
Marathe, Yogesh ;
Kunjir, Shrikant M. ;
Banerjee, Rahul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (18) :6570-6573
[5]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[6]   A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles [J].
Farmann, Alexander ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2016, 329 :123-137
[7]   Constructing Cu ion sites in MOF/COF heterostructure for noble-metal-free photoredox catalysis [J].
Han, Wei ;
Shao, Lu-Hua ;
Sun, Xiao-Jun ;
Liu, Yu-Han ;
Zhang, Feng-Ming ;
Wang, Ya ;
Dong, Peng-Yu ;
Zhang, Gui-Ling .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 317
[8]   Preparation of COF-TpPa1 membranes by chemical vapor deposition method for separation of dyes [J].
Hao, Shuang ;
Zhang, Tianqi ;
Fan, Shengnan ;
Jia, Zhiqian ;
Yang, Yu .
CHEMICAL ENGINEERING JOURNAL, 2021, 421
[9]   Homogeneous Polymerization of Self-standing Covalent Organic Framework Films with High Performance in Molecular Separation [J].
He, Yasan ;
Lin, Xiaogeng ;
Chen, Jianhua ;
Guo, Zhiyong ;
Zhan, Hongbing .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) :41942-41949
[10]   High-density active site COFs with a flower-like morphology for energy storage applications [J].
He, Yuanyuan ;
An, Ning ;
Meng, Congcong ;
Xie, Kefeng ;
Wang, Xiaotong ;
Dong, Xiuyan ;
Sun, Daming ;
Yang, Yuying ;
Hu, Zhongai .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (20) :11030-11038