Virtual Excitations and Entanglement Dynamics and Polygamy in Three Ultra-Strongly Coupled Systems

被引:0
作者
Hab-arrih, Radouan [1 ]
Jellal, Ahmed [1 ,2 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Lab Theoret Phys, El Jadida 24000, Morocco
[2] Canadian Quantum Res Ctr, Vernon, BC V1T 2L7, Canada
关键词
entanglement; Milburn dynamics; oscillators; quantum polygamy; ultra-strong coupling; virtual excitations; QUANTUM; OSCILLATORS;
D O I
10.1002/andp.202200527
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Milburn dynamics of three non resonant ultra-strongly coupled oscillators are resolved by using symplectic geometry. The Milburn dynamics of virtual excitations and how they affect the pairwise entanglement are looked at. It is found that the dynamics of excitations and entanglement experience similar profiles against time, physical parameters, and decoherence rate. Furthermore, it is shown that the extinction of excitations entails separability, which demonstrates the hierarchy between entanglement and virtual excitations. Additionally, the effects of physical parameters on the redistribution of virtual excitations among the three bi-partitions are analyzed. As a result, the violation of the monogamy of excitations is shown as in quantum discord. This implies that excitations can be considered as signatures of quantum correlations beyond entanglement. Besides, it is emphasized that the treatment can be used to model coupled quantum circuits in real situations (with decoherence).
引用
收藏
页数:11
相关论文
共 52 条
  • [1] The Response of Nanobeams with Temperature-Dependent Properties Using State-Space Method via Modified Couple Stress Theory
    Abouelregal, Ahmed E.
    Marin, Marin
    [J]. SYMMETRY-BASEL, 2020, 12 (08):
  • [2] Extremal entanglement and mixedness in continuous variable systems
    Adesso, G
    Serafini, A
    Illuminati, F
    [J]. PHYSICAL REVIEW A, 2004, 70 (02) : 022318 - 1
  • [3] Continuous Variable Quantum Information: Gaussian States and Beyond
    Adesso, Gerardo
    Ragy, Sammy
    Lee, Antony R.
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
  • [4] Coupled quantized mechanical oscillators
    Brown, K. R.
    Ospelkaus, C.
    Colombe, Y.
    Wilson, A. C.
    Leibfried, D.
    Wineland, D. J.
    [J]. NATURE, 2011, 471 (7337) : 196 - 199
  • [5] General solution of the time evolution of two interacting harmonic oscillators
    Bruschi, David Edward
    Paraoanu, G. S.
    Fuentes, Ivette
    Wilhelm, Frank K.
    Schell, Andreas W.
    [J]. PHYSICAL REVIEW A, 2021, 103 (02)
  • [6] Time evolution of coupled multimode and multiresonator optomechanical systems
    Bruschi, David Edward
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (06)
  • [7] 'Mechano-optics': an optomechanical quantum simulator
    Bruschi, David Edward
    Xuereb, Andre
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [8] Chen J., 2021, OPT EXPRESS, V29
  • [9] Chiara G. D., 2018, REP PROG PHYS, V81
  • [10] Distributed entanglement
    Coffman, V
    Kundu, J
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 2000, 61 (05): : 5