Investigation of battery thermal management system with considering effect of battery aging and nanofluids

被引:37
作者
Guo, Zengjia [1 ]
Wang, Yang [1 ]
Zhao, Siyuan [1 ]
Zhao, Tianshou [2 ]
Ni, Meng [1 ]
机构
[1] Hong Kong Polytech Univ, Res Inst Sustainable Urban Dev RISUD, Res Inst Smart Energy RISE, Dept Bldg & Real Estate,Kowloon, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Coll Engn, Dept Mech & Energy Engn, Shenzhen, Peoples R China
关键词
Lithium -ion battery; Battery aging; Thermal management system; Nanofluid; Thermal behavior; Electrochemical characteristic; LITHIUM-ION BATTERY; PHASE-CHANGE MATERIAL; PERFORMANCE; DESIGN; MODEL; PACK; OPTIMIZATION; VALIDATION;
D O I
10.1016/j.ijheatmasstransfer.2022.123685
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this research, a novel model considering electrochemistry, battery aging and heat transfer is developed for the design and optimization of battery thermal management system (BTMS) to ensure efficient and durable operation of batteries. The multiphysics behaviors in different working cycles of BTMSs are ana-lyzed and compared. It is found that solid electrolyte interphase (SEI) formation inside the aged battery pack leads to the higher heat generation rate, which is the main reason that BTMSs only provide effec-tive cooling performance in the initial working cycles but fail to control the battery temperature after 10 0 0 cycles. Meanwhile, BTMS with water provides the lowest maximum temperature and temperature difference with the lowest pressure loss, which were 5.14 K, 4.33 K, 3.79 K and 3.94 K, 3.51 K, 3.2 K and 2772.7 Pa, 3980.9 Pa, 5271.8 Pa lower than those of BTMS with EO, were 2.17 K, 1.66 K, 1.37 K and 1.79 K, 1.43 K, 1.19 K and 544.4 Pa, 758.1 Pa, 984.3 Pa lower than those of BTMS with EG. In addition, BTMS with water also showed the best performance in controlling SEI formation and capacity fade, lead-ing the highest average potential. Furthermore, dispersing nanoparticles into BTMSs can further enhance the cooling performance with a higher pressure loss, and BTMS with water-based nanofluid achieves the best performance. Besides, the cooling performance of BTMS increases with increasing volume fraction of nanoparticles, although the pressure loss is also higher. Nanoparticle shapes also have a significant effect on battery thermal behaviors and electrochemical performance. With brick-shaped nanoparticles, BTMS well cools the battery pack and reduces the battery capacity fade. For comparison, BTMS with spherical-shaped nanoparticles achieves the lowest pressure loss with providing favorable thermal man-age for battery pack. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
[1]  
Al Hallaj S, 2000, J ELECTROCHEM SOC, V147, P3231, DOI 10.1149/1.1393888
[2]   Analysis of Optimal Heat Transfer in a PEM Fuel Cell Cooling Plate [J].
Chen, F. C. ;
Gao, Z. ;
Loutfy, R. O. ;
Hecht, M. .
FUEL CELLS, 2004, 3 (04) :181-188
[3]   A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery [J].
Chiew, J. ;
Chin, C. S. ;
Toh, W. D. ;
Gao, Z. ;
Jia, J. ;
Zhang, C. Z. .
APPLIED THERMAL ENGINEERING, 2019, 147 :450-463
[4]   Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li-ion batteries [J].
Colclasure, Andrew M. ;
Smith, Kandler A. ;
Kee, Robert J. .
ELECTROCHIMICA ACTA, 2011, 58 :33-43
[5]   Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids [J].
Corcione, Massimo .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) :789-793
[6]   Comparison of cooling plate configurations for automotive battery pack thermal management [J].
Darcovich, K. ;
MacNeil, D. D. ;
Recoskie, S. ;
Cadic, Q. ;
Ilinca, F. .
APPLIED THERMAL ENGINEERING, 2019, 155 :185-195
[7]   Effect of liquid cooling system structure on lithium-ion battery pack temperature fields [J].
Ding, Yuzhang ;
Ji, Haocheng ;
Wei, Minxiang ;
Liu, Rui .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 183
[8]   Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle [J].
E, Jiaqiang ;
Yue, Meng ;
Chen, Jingwei ;
Zhu, Hao ;
Deng, Yuanwang ;
Zhu, Yun ;
Zhang, Feng ;
Wen, Ming ;
Zhang, Bin ;
Kang, Siyi .
APPLIED THERMAL ENGINEERING, 2018, 144 :231-241
[9]   Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system [J].
E, Jiaqiang ;
Han, Dandan ;
Qiu, An ;
Zhu, Hao ;
Deng, Yuanwang ;
Chen, Jingwei ;
Zhao, Xiaohuan ;
Zuo, Wei ;
Wang, Hongcai ;
Chen, Jianmei ;
Peng, Qingguo .
APPLIED THERMAL ENGINEERING, 2018, 132 :508-520
[10]   A Model for Predicting Capacity Fade due to SEI Formation in a Commercial Graphite/LiFePO4 Cell [J].
Ekstrom, Henrik ;
Lindbergh, Goran .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A1003-A1007