High-temperature creep-fatigue-oxidation behaviors of P92 steel: Evaluation of life prediction models

被引:14
|
作者
Wang, Kang-Kang [1 ]
Wen, Jian-Feng [1 ]
Xia, Xian-Xi [2 ]
Wang, Run-Zi [1 ,3 ]
Zhang, Guo-Dong [2 ]
Zhang, Xian-Cheng [1 ]
Tu, Shan-Tung [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Pressure Syst & Safety MOE, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Suzhou Nucl Power Res Inst, Suzhou, Peoples R China
[3] Tohoku Univ, Grad Sch Engn, Fracture & Reliabil Res Inst, Sendai, Miyagi, Japan
基金
中国国家自然科学基金;
关键词
creep-fatigue; damage model; life assessment; oxidation; P92; steel; DENSITY EXHAUSTION MODEL; LOW-CYCLE FATIGUE; THERMOMECHANICAL FATIGUE; HARMONY SEARCH; DAMAGE; STRAIN; DEFORMATION; SUPERALLOY; EVOLUTION; OXYGEN;
D O I
10.1111/ffe.13892
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Damages caused by the effects of cyclic loading (fatigue) and high temperature (creep and oxidation) have been considered critical and need to be appropriately evaluated. A series of strain-controlled fatigue and creep-fatigue tests are performed on P92 at 873 K under oxygen-containing environment. The creep-fatigue life prediction results are summarized using models based on strain-range partition, Manson-Coffin equation and linear damage summation (LDS) rule. Obviously, the models based on the LDS rule show relatively good performance with an error band of +/- 2.5. In view of the adverse effects of oxidation on creep-fatigue endurance, this paper further develops a physically-based oxidation damage equation, which is incorporated into LDS rule for the improvement of life assessment. The predicted and experimental results falling into +/- 1.5 error band proved the accuracy of the proposed oxidation damage equation in the LDS rule. Additionally, model selection criteria are recommended to evaluate the model prediction capabilities.
引用
收藏
页码:682 / 698
页数:17
相关论文
共 50 条
  • [1] Study on High Temperature Creep Behaviors of P92 Steel
    Zhang Naiqiang
    Xu Hong
    Mao Xueping
    Wang Gang
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS IX, 2011, 452-453 : 521 - 524
  • [2] Analysis on stress-strain behavior and life prediction of P92 steel under creep-fatigue interaction conditions
    Zhao, Lei
    Xu, Lianyong
    Han, Yongdian
    Jing, Hongyang
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2020, 43 (11) : 2731 - 2743
  • [3] Cyclic deformation behaviors and damage mechanisms in P92 steel under creep-fatigue loading: Effects of hold condition and oxidation
    Wang, Kang-Kang
    Wen, Jian-Feng
    Wang, Run-Zi
    Ye, Ting
    Wang, Ji
    Tan, Jian-Ping
    Chen, Hao-Feng
    Zhang, Xian-Cheng
    Tu, Shan-Tung
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 187
  • [4] Thermal-mechanical fatigue behaviour and life prediction of P92 steel, including average temperature and dwell effects
    Chang, Le
    Li, Xin
    Wen, Jian-Bin
    Zhou, Bin-Bin
    He, Xiao-Hua
    Zhang, Guo-Dong
    Xue, Fei
    Zhao, Yan-Fen
    Zhou, Chang-Yu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (01): : 819 - 837
  • [5] Creep-fatigue-oxidation interaction in Grade 91 steel weld joints for high temperature applications
    Shankar, Vani
    Sandhya, R.
    Mathew, M. D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (29-30): : 8428 - 8437
  • [6] Analysis on microstructure and properties evolution and life prediction of P92 steel in high temperature service
    Xia, Xianxi
    Zhu, Baoyin
    Jin, Xiao
    Tang, Minjin
    Yang, Lukuan
    Xue, Fei
    Shi, Jinhua
    Zhang, Guodong
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2021, 194
  • [7] Influence of 650 °C Thermal Aging on Microstructure and Creep-Fatigue Behaviors of P92 Steel
    Mao, Jianfeng
    Zhu, Jian
    Wang, Dasheng
    Zhong, Fengping
    Chen, Jichang
    Zhou, Qiang
    Bao, Shiyi
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (03):
  • [8] Creep behavior and life evaluation of aged P92 steel
    Kim, Bumjoon
    Lim, Byeongsoo
    Ki, Donghyun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (25-27): : 4231 - 4236
  • [9] Assessment of prior fatigue damage and a new approach to predict remanent creep rupture of P92 steel
    Zhang, Chunan
    Zhang, Tianyu
    Wang, Xiaowei
    Wen, Jianfeng
    Jiang, Yong
    Gong, Jianming
    Tu, Shantung
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2023, 201
  • [10] Research On Creep-Fatigue Life Prediction For P92 Steel Under Stress-Controlled State
    Wang, Dexian
    Ji, Dongmei
    Ren, Jianxing
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 972 - +