Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization

被引:6
|
作者
Yang, Zuyuan [1 ,2 ]
Zhang, Huimin [1 ]
Liang, Naiyao [1 ]
Li, Zhenni [1 ]
Sun, Weijun [1 ,3 ]
机构
[1] Guangdong Univ Technol, Guangdong Key Lab IoT Informat Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Ante Laser Co Ltd, Guangzhou 510006, Peoples R China
[3] Guangdong Hong Kong Macao Joint Lab Smart Discret, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Semi-supervised learning; Non-negative matrix factorization; Label relaxation;
D O I
10.1007/s00371-022-02419-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Semi-supervised multi-view clustering in the subspace has attracted sustained attention. The existing methods often project the samples with the same label into the same point in the low dimensional space. This hard constraint-based method magnifies the dimension reduction error, restricting the subsequent clustering performance. To relax the labeled data during projection, we propose a novel method called label relaxation-based semi-supervised non-negative matrix factorization (LRSNMF). In our method, we first employ the Spearman correlation coefficient to measure the similarity between samples. Based on this, we design a new relaxed non-negative label matrix for better subspace learning, instead of the binary matrix. Also, we derive an updated algorithm based on an alternative iteration rule to solve the proposed model. Finally, the experimental results on three real-world datasets (i.e., MSRC, ORL1, and ORL2) with six evaluation indexes (i.e., accuracy, NMI, purity, F-score, precision, and recall) show the advantages of our LRSNMF, with comparison to the state-of-the-art methods.
引用
收藏
页码:1409 / 1422
页数:14
相关论文
共 50 条
  • [41] Semi-supervised Non-negative Local Coordinate Factorization
    Zhou, Cherong
    Zhang, Xiang
    Guan, Naiyang
    Huang, Xuhui
    Luo, Zhigang
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 106 - 113
  • [42] Transfer Semi-Supervised Non-Negative Matrix Factorization for Speech Emotion Recognition
    Song, Peng
    Ou, Shifeng
    Zhang, Xinran
    Jin, Yun
    Zheng, Wenming
    Liu, Jinglei
    Yu, Yanwei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (10) : 2647 - 2650
  • [43] DCCNMF: Deep Complementary and Consensus Non-negative Matrix Factorization for multi-view clustering
    Gunawardena, Sohan
    Luong, Khanh
    Balasubramaniam, Thirunavukarasu
    Nayak, Richi
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [44] Robust Hypergraph Regularized Deep Non-Negative Matrix Factorization for Multi-View Clustering
    Che, Hangjun
    Li, Chenglu
    Leung, Man-Fai
    Ouyang, Deqiang
    Dai, Xiangguang
    Wen, Shiping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [45] Stopping Criteria for Non-Negative Matrix Factorization Based Supervised and Semi-Supervised Source Separation
    Germain, Franois G.
    Mysore, Gautham J.
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (10) : 1284 - 1288
  • [46] Multi-view non-negative matrix factorization for scene recognition
    Tang, Jinjiang
    Qian, Weijie
    Zhao, Zhijun
    Liu, Weiliang
    He, Ping
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 9 - 13
  • [47] Semi-supervised link prediction based on non-negative matrix factorization for temporal networks *
    Zhang, Ting
    Zhang, Kun
    Li, Xun
    Lv, Laishui
    Sun, Qi
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [48] Re-weighted multi-view clustering via triplex regularized non-negative matrix factorization
    Feng, Lin
    Liu, Wenzhe
    Meng, Xiangzhu
    Zhang, Yong
    NEUROCOMPUTING, 2021, 464 (464) : 352 - 363
  • [49] A network-based sparse and multi-manifold regularized multiple non-negative matrix factorization for multi-view clustering
    Zhou, Lihua
    Du, Guowang
    Lu, Kevin
    Wang, Lizhen
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [50] Multi-view clustering based on pairwise co-regularization and robust dual graph non-negative matrix factorization
    Tang, Huiguo
    Liu, Shihu
    Tang, Yi
    Yu, Fusheng
    NEUROCOMPUTING, 2025, 611