UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area

被引:2
|
作者
de Andrade, Oto Barbosa [1 ]
Montenegro, Abelardo Antonio de Assuncao [1 ]
Neto, Moises Alves da Silva [1 ]
de Sousa, Lizandra de Barros [1 ]
Almeida, Thayna Alice Brito [1 ]
de Lima, Joao Luis Mendes Pedroso [2 ]
de Carvalho, Ailton Alves [3 ]
da Silva, Marcos Vinicius [1 ]
de Medeiros, Victor Wanderley Costa [4 ]
Soares, Rodrigo Gabriel Ferreira [4 ]
da Silva, Thieres George Freire [1 ,3 ]
Vilar, Barbara Pinto [5 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Agr Engn, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[2] Univ Coimbra, Fac Sci & Technol, MARE Marine & Environm Sci Ctr, Dept Civil Engn,ARNET Aquatic Res Network, Rua Luis Reis Santos,Polo II, P-3030788 Coimbra, Portugal
[3] Univ Fed Rural Pernambuco, Acad Unit Serra Talhada, Ave Gregorio Ferraz Nogueira, BR-56909535 Serra Talhada, PE, Brazil
[4] Univ Fed Rural Pernambuco, Dept Stat & Informat, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[5] TPF Engn, BR-51011530 Recife, PE, Brazil
来源
AGRIENGINEERING | 2024年 / 6卷 / 01期
关键词
crop classification; multispectral bands; RGB bands; machine learning; VEGETATION INDEXES;
D O I
10.3390/agriengineering6010031
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Precision agriculture requires accurate methods for classifying crops and soil cover in agricultural production areas. The study aims to evaluate three machine learning-based classifiers to identify intercropped forage cactus cultivation in irrigated areas using Unmanned Aerial Vehicles (UAV). It conducted a comparative analysis between multispectral and visible Red-Green-Blue (RGB) sampling, followed by the efficiency analysis of Gaussian Mixture Model (GMM), K-Nearest Neighbors (KNN), and Random Forest (RF) algorithms. The classification targets included exposed soil, mulching soil cover, developed and undeveloped forage cactus, moringa, and gliricidia in the Brazilian semiarid. The results indicated that the KNN and RF algorithms outperformed other methods, showing no significant differences according to the kappa index for both Multispectral and RGB sample spaces. In contrast, the GMM showed lower performance, with kappa index values of 0.82 and 0.78, compared to RF 0.86 and 0.82, and KNN 0.86 and 0.82. The KNN and RF algorithms performed well, with individual accuracy rates above 85% for both sample spaces. Overall, the KNN algorithm demonstrated superiority for the RGB sample space, whereas the RF algorithm excelled for the multispectral sample space. Even with the better performance of multispectral images, machine learning algorithms applied to RGB samples produced promising results for crop classification.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 50 条
  • [21] Integrating UAV-based multispectral remote sensing and machine learning for detection and classification of chocolate spot disease in faba bean
    Mohammadi, Shirin
    Uhlen, Anne Kjersti
    Aamot, Heidi Udnes
    Dieseth, Jon Arne
    Shafiee, Sahameh
    CROP SCIENCE, 2025, 65 (01)
  • [22] UAV-based multispectral image analytics and machine learning for predicting crop nitrogen in rice
    Khose, Suyog Balasaheb
    Mailapalli, Damodhara Rao
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [23] Assessment of cotton and sorghum stand establishment using UAV-based multispectral and DSLR-based RGB imagery
    Dhakal, Madhav
    Huang, Yanbo
    Locke, Martin A.
    Reddy, Krishna N.
    Moore, Matthew T.
    Krutz, L. Jason
    Gholson, Drew
    Bajgain, Rajen
    AGROSYSTEMS GEOSCIENCES & ENVIRONMENT, 2022, 5 (02)
  • [24] UAV-based multispectral and thermal cameras to predict soil water content - A machine learning approach
    Bertalan, Laszlo
    Holb, Imre
    Pataki, Angelika
    Szabo, Gergely
    Szaloki, Annamaria Kupasne
    Szabo, Szilard
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 200
  • [25] Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Based on UAV RGB and Multispectral Data Using Machine Learning Methods
    Ilniyaz, Osman
    Kurban, Alishir
    Du, Qingyun
    REMOTE SENSING, 2022, 14 (02)
  • [26] Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques
    Osco, Lucas Prado
    Marcato Junior, Jose, Jr.
    Marques Ramos, Ana Paula
    Garcia Furuya, Danielle Elis
    Santana, Dthenifer Cordeiro
    Ribeiro Teodoro, Larissa Pereira
    Goncalves, Wesley Nunes
    Rojo Baio, Fabio Henrique
    Pistori, Hemerson
    da Silva Junior, Carlos Antonio, Jr.
    Teodoro, Paulo Eduardo
    REMOTE SENSING, 2020, 12 (19) : 1 - 17
  • [27] Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods
    Du, Liping
    Yang, Huan
    Song, Xuan
    Wei, Ning
    Yu, Caixia
    Wang, Weitong
    Zhao, Yun
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [28] Urban Tree Species Classification Using UAV-Based Multispectral Images and LiDAR Point Clouds
    Li, Xiaofan
    Wang, Lanying
    Guan, Haiyan
    Chen, Ke
    Zang, Yufu
    Yu, Yongtao
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2024, 8 (01)
  • [29] VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY
    Padua, Luis
    Adao, Telmo
    Hruska, Jonas
    Guimaraes, Nathalie
    Marques, Pedro
    Peres, Emanuel
    Sousa, Joaquim J.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6309 - 6312
  • [30] Classification of soybean genotypes for industrial traits using UAV multispectral imagery and machine learning
    Santana, Dthenifer Cordeiro
    Teodoro, Larissa Pereira Ribeiro
    Baio, Fabio Henrique Rojo
    dos Santos, Regimar Garcia
    Coradi, Paulo Carteri
    Biduski, Barbara
    da Silva Junior, Carlos Antonio
    Teodoro, Paulo Eduardo
    Shiratsuchi, Luaciano Shozo
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 29