UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area

被引:3
作者
de Andrade, Oto Barbosa [1 ]
Montenegro, Abelardo Antonio de Assuncao [1 ]
Neto, Moises Alves da Silva [1 ]
de Sousa, Lizandra de Barros [1 ]
Almeida, Thayna Alice Brito [1 ]
de Lima, Joao Luis Mendes Pedroso [2 ]
de Carvalho, Ailton Alves [3 ]
da Silva, Marcos Vinicius [1 ]
de Medeiros, Victor Wanderley Costa [4 ]
Soares, Rodrigo Gabriel Ferreira [4 ]
da Silva, Thieres George Freire [1 ,3 ]
Vilar, Barbara Pinto [5 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Agr Engn, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[2] Univ Coimbra, Fac Sci & Technol, MARE Marine & Environm Sci Ctr, Dept Civil Engn,ARNET Aquatic Res Network, Rua Luis Reis Santos,Polo II, P-3030788 Coimbra, Portugal
[3] Univ Fed Rural Pernambuco, Acad Unit Serra Talhada, Ave Gregorio Ferraz Nogueira, BR-56909535 Serra Talhada, PE, Brazil
[4] Univ Fed Rural Pernambuco, Dept Stat & Informat, Rua Dom Manoel de Medeiros, BR-52171900 Recife, PE, Brazil
[5] TPF Engn, BR-51011530 Recife, PE, Brazil
来源
AGRIENGINEERING | 2024年 / 6卷 / 01期
关键词
crop classification; multispectral bands; RGB bands; machine learning; VEGETATION INDEXES;
D O I
10.3390/agriengineering6010031
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Precision agriculture requires accurate methods for classifying crops and soil cover in agricultural production areas. The study aims to evaluate three machine learning-based classifiers to identify intercropped forage cactus cultivation in irrigated areas using Unmanned Aerial Vehicles (UAV). It conducted a comparative analysis between multispectral and visible Red-Green-Blue (RGB) sampling, followed by the efficiency analysis of Gaussian Mixture Model (GMM), K-Nearest Neighbors (KNN), and Random Forest (RF) algorithms. The classification targets included exposed soil, mulching soil cover, developed and undeveloped forage cactus, moringa, and gliricidia in the Brazilian semiarid. The results indicated that the KNN and RF algorithms outperformed other methods, showing no significant differences according to the kappa index for both Multispectral and RGB sample spaces. In contrast, the GMM showed lower performance, with kappa index values of 0.82 and 0.78, compared to RF 0.86 and 0.82, and KNN 0.86 and 0.82. The KNN and RF algorithms performed well, with individual accuracy rates above 85% for both sample spaces. Overall, the KNN algorithm demonstrated superiority for the RGB sample space, whereas the RF algorithm excelled for the multispectral sample space. Even with the better performance of multispectral images, machine learning algorithms applied to RGB samples produced promising results for crop classification.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 52 条
[1]   Precision Irrigation Management Using Machine Learning and Digital Farming Solutions [J].
Abioye, Emmanuel Abiodun ;
Hensel, Oliver ;
Esau, Travis J. ;
Elijah, Olakunle ;
Abidin, Mohamad Shukri Zainal ;
Ayobami, Ajibade Sylvester ;
Yerima, Omosun ;
Nasirahmadi, Abozar .
AGRIENGINEERING, 2022, 4 (01) :70-103
[2]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[3]   Koppen's climate classification map for Brazil [J].
Alvares, Clayton Alcarde ;
Stape, Jose Luiz ;
Sentelhas, Paulo Cesar ;
de Moraes Goncalves, Jose Leonardo ;
Sparovek, Gerd .
METEOROLOGISCHE ZEITSCHRIFT, 2013, 22 (06) :711-728
[4]   How to enhance the agronomic performance of cactus-sorghum intercropped system: planting configurations, density and orientation [J].
Alves, Cleber Pereira ;
da Rosa Ferraz Jardim, Alexandre Manicoba ;
Araujo Junior, George do Nascimento ;
Bastos de Souza, Luciana Sandra ;
Leal de Araujo, Gherman Garcia ;
Alves de Souza, Carlos Andre ;
da Silva Salvador, Kaique Renan ;
Cordeiro Leite, Renan Matheus ;
Pinheiro, Antonio Gebson ;
Freire da Silva, Thieres George .
INDUSTRIAL CROPS AND PRODUCTS, 2022, 184
[5]   Crop mapping through a hybrid machine learning and deep learning method [J].
Asadi, Bahar ;
Shamsoddini, Ali .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 33
[6]   Multispectral Vegetation Indices and Machine Learning Approaches for Durum Wheat (Triticum durum Desf.) Yield Prediction across Different Varieties [J].
Badagliacca, Giuseppe ;
Messina, Gaetano ;
Pratico, Salvatore ;
Lo Presti, Emilio ;
Preiti, Giovanni ;
Monti, Michele ;
Modica, Giuseppe .
AGRIENGINEERING, 2023, 5 (04) :2032-2048
[7]  
Balieiro B.T.D.S., 2022, Cerrados, V20, P261, DOI [10.46551/rc24482692202227, DOI 10.46551/RC24482692202227]
[8]   Crop Type Prediction: A Statistical and Machine Learning Approach [J].
Bhuyan, Bikram Pratim ;
Tomar, Ravi ;
Singh, T. P. ;
Cherif, Amar Ramdane .
SUSTAINABILITY, 2023, 15 (01)
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population [J].
Cao, Xiaofeng ;
Liu, Yulin ;
Yu, Rui ;
Han, Dejun ;
Su, Baofeng .
REMOTE SENSING, 2021, 13 (24)