Copper current collector: The cornerstones of practical lithium metal and anode-free batteries

被引:7
|
作者
Zhou, Jinyang [1 ]
Qin, Jian [1 ]
Zhan, Hui [1 ,2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Engn Res Ctr Organosilicon Cpds & Mat, Minist Educ, Wuhan 430072, Peoples R China
关键词
3D structure; artificial SEI; anode free; copper current collector; Li affinity; Lithium metal battery; INTERPHASE;
D O I
10.1002/cphc.202400007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Comparing with the commercial Li-ion batteries, Li metal secondary batteries (LMB) exhibit unparalleled energy density. However, many issues have hindered the practical application. As an element in lithium metal and anode-free batteries, the role of current collector is critical. Comparing with the cathode current collector, more requirements have been imposed on anode current collector as the anode side is usually the starting point of thermal runaway and many other risks, additionally, the anode in Li metal battery very likely determines the cycling life of full cell. In the review, we first give a systematic introduction of copper current collector and the related issues and challenges, and then we summarize the main approaches that have been mentioned in the research, including Cu current collector with 3D architecture, lithophilic modification of the current collector, artificial SEI layer construction on Cu current collector and carbon or polymer decoration of Cu current collector. Finally, we give a prospective comment of the future development in this field. Constructing suitable copper anode current collector can tackle the problems of lithium metal anode, especially for anode free systems. In this review, first copper current collector and the related issues are systematically introduced, then main approaches conducted on copper current collector modification in previous researches are summarized, and in the end, some concerns about the current technology and future development of copper current collector are made. image
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Constructing LiF-rich artificial SEI at a two-dimensional copper net current collector in anode-free lithium metal batteries
    Yu, Kaichen
    Chen, Jinbiao
    Xie, Xintai
    Lin, Kaiji
    Li, Jie
    Shi, Zhicong
    SURFACES AND INTERFACES, 2022, 34
  • [12] Research Progress of Anode-Free Lithium Metal Batteries
    Zhang, Jian
    Khan, Abrar
    Liu, Xiaoyuan
    Lei, Yuban
    Du, Shurong
    Lv, Le
    Zhao, Hailei
    Luo, Dawei
    CRYSTALS, 2022, 12 (09)
  • [13] A low-Fermi-level current collector enables anode-free lithium metal batteries with long cycle life
    Zhang, Xue-Liang
    Ma, Liang
    Cai, Yue-Peng
    Fransaer, Jan
    Zheng, Qifeng
    MATTER, 2024, 7 (02) : 583 - 602
  • [14] An electron-deficient carbon current collector for anode-free Li-metal batteries
    Kwon, Hyeokjin
    Lee, Ju-Hyuk
    Roh, Youngil
    Baek, Jaewon
    Shin, Dong Jae
    Yoon, Jong Keon
    Ha, Hoe Jin
    Kim, Je Young
    Kim, Hee-Tak
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [15] An electron-deficient carbon current collector for anode-free Li-metal batteries
    Hyeokjin Kwon
    Ju-Hyuk Lee
    Youngil Roh
    Jaewon Baek
    Dong Jae Shin
    Jong Keon Yoon
    Hoe Jin Ha
    Je Young Kim
    Hee-Tak Kim
    Nature Communications, 12
  • [16] Lithium Oxalate as a Lifespan Extender for Anode-Free Lithium Metal Batteries
    Huang, Chen-Jui
    Hsu, Ya-Ching
    Shitaw, Kassie Nigus
    Siao, Yu-Jhen
    Wu, She-Huang
    Wang, Chia-Hsin
    Su, Wei-Nien
    Hwang, Bing Joe
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (23) : 26724 - 26732
  • [17] Challenges, Strategies, and Prospects of the Anode-Free Lithium Metal Batteries
    Shao, Ahu
    Tang, Xiaoyu
    Zhang, Min
    Bai, Miao
    Ma, Yue
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (04):
  • [18] Cyclability Investigation of Anode-Free Lithium-Metal Batteries
    Marrache, Roy
    Peled, Emanuel
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [19] Anode-free rechargeable lithium metal batteries: Progress and prospects
    Xie, Zhengkun
    Wu, Zhijun
    An, Xiaowei
    Yue, Xiyan
    Wang, Jiajia
    Abudula, Abuliti
    Guan, Guoqing
    ENERGY STORAGE MATERIALS, 2020, 32 : 386 - 401
  • [20] Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries
    Genovese, Matthew
    Louli, A. J.
    Weber, Rochelle
    Hames, Sam
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (14) : A3321 - A3325