Parameter-Varying Koopman Operator for Nonlinear System Modeling and Control

被引:0
|
作者
Lee, Changyu [1 ]
Park, Kiyong [1 ]
Kim, Jinwhan [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon 34141, South Korea
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
关键词
Parameter-varying system; Koopman operator; Model predictive control; PREDICTIVE CONTROL;
D O I
10.1109/CDC49753.2023.10384235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel approach for modeling and controlling nonlinear systems with varying parameters. The approach introduces the use of a parameter-varying Koopman operator (PVKO) in a lifted space, which provides an efficient way to understand system behavior and design control algorithms that account for underlying dynamics and changing parameters. The PVKO builds on a conventional Koopman model by incorporating local time-invariant linear systems through interpolation within the lifted space. This paper outlines a procedure for identifying the PVKO and designing a model predictive control using the identified PVKO model. Simulation results demonstrate that the proposed approach improves model accuracy and enables predictions based on future parameter information. The feasibility and stability of the proposed control approach are analyzed, and their effectiveness is demonstrated through simulation.
引用
收藏
页码:3700 / 3705
页数:6
相关论文
共 50 条
  • [31] Stability radius of linear parameter-varying systems and applications
    Ngoc, Pham Huu Anh
    Naito, Toshiki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 170 - 191
  • [32] Identification of a Parameter-Varying Mist Reactor for Cell Culture
    Cham, Chin Leei
    Tan, Ai Hui
    Tan, Wooi Haw
    IFAC PAPERSONLINE, 2020, 53 (01): : 622 - 627
  • [33] Tube-based model predictive control for linear parameter-varying systems with bounded rate of parameter variation
    Abbas, Hossam Seddik
    Maennel, Georg
    Hoffmann, Christian Herzogne
    Rostalski, Philipp
    AUTOMATICA, 2019, 107 : 21 - 28
  • [34] Koopman Operator Framework for Time Series Modeling and Analysis
    Surana, Amit
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (05) : 1973 - 2006
  • [35] Koopman Operator Framework for Time Series Modeling and Analysis
    Amit Surana
    Journal of Nonlinear Science, 2020, 30 : 1973 - 2006
  • [36] Risk-Informed Model-Free Safe Control of Linear Parameter-Varying Systems
    Esmaeili, Babak
    Modares, Hamidreza
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (09) : 1918 - 1932
  • [37] Real-Time Predictive Control for SI Engines Using Linear Parameter-Varying Models
    Majecki, Pawel
    van der Molen, Gerrit M.
    Grimble, Michael J.
    Haskara, Ibrahim
    Hu, Yiran
    Chang, Chen-Fang
    IFAC PAPERSONLINE, 2015, 48 (23): : 94 - 101
  • [38] Robust IMC-PID and Parameter-varying Control Strategies for Automated Blood Pressure Regulation
    Tasoujian, Shahin
    Salavati, Saeed
    Franchek, Matthew
    Grigoriadis, Karolos
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (07) : 1803 - 1813
  • [39] Koopman operator-based multi-model for predictive control
    Lawrynczuk, Maciej
    NONLINEAR DYNAMICS, 2024, 112 (12) : 9955 - 9982
  • [40] An improved robust model predictive control for linear parameter-varying input-output models
    Abbas, H. S.
    Hanema, J.
    Toth, R.
    Mohammadpour, J.
    Meskin, N.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (03) : 859 - 880