Non-K3 Weierstrass numerical semigroups

被引:0
作者
Komeda, Jiryo [1 ]
Mase, Makiko [2 ]
机构
[1] Kanagawa Inst Technol, Ctr Basic Educ & Integrated Learning, Dept Math, Atsugi, Kanagawa 2430292, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
Weierstrass semigroups; Numerical semigroups; Double covers of curves; Non-K3 numerical semigroups; DOUBLE COVERINGS; CURVES; POINTS; GENUS;
D O I
10.1007/s00233-024-10406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the result of Reid (J Lond Math Soc 13:454-458, 1976), namely, we prove that a curve of genus >= g2+4g+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqq g<^>2+4g+6$$\end{document} having a double cover of a hyperelliptic curve of genus g >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\geqq 2$$\end{document} does not lie as a non-singular curve on any K3 surface. Applying this result we construct non-K3 Weierstrass numerical semigroups. A numerical semigroup H is said to be Weierstrass if there exists a pointed non-singular curve (C, P) such that H consists of non-negative integers which are the pole orders at P of a rational function on C having a pole only at P. We call the numerical semigroup K3 if we can take the curve C as a curve on some K3 surface. A non-K3 numerical semigroup means that it cannot be attained by a pointed non-singular curve on any K3 surface. We also give infinite sequences of non-K3 Weierstrass numerical semigroups.
引用
收藏
页码:221 / 257
页数:37
相关论文
共 50 条
  • [31] Weierstrass semigroups, pure gaps and codes on function fields
    Alonso S. Castellanos
    Erik A. R. Mendoza
    Luciane Quoos
    Designs, Codes and Cryptography, 2024, 92 : 1219 - 1242
  • [32] Gorenstein curves with quasi-symmetric Weierstrass semigroups
    Oliveira, G
    Stohr, KO
    GEOMETRIAE DEDICATA, 1997, 67 (01) : 45 - 63
  • [33] WEIERSTRASS SEMIGROUPS IN AN ASYMPTOTICALLY OPTIMAL TOWER OF FUNCTION FIELDS
    Almeida Filho, Gilberto B.
    Tafazolian, Saeed
    Torres, Fernando
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (03) : 755 - 792
  • [34] Gorenstein Curves with Quasi-Symmetric Weierstrass Semigroups
    Gilvan Oliveira
    Karl-Lotto Stöhr
    Geometriae Dedicata, 1997, 67 : 45 - 63
  • [35] Weierstrass semigroups on double covers of genus 4 curves
    Kim, Seon Jeong
    Komeda, Jiryo
    JOURNAL OF ALGEBRA, 2014, 405 : 142 - 167
  • [36] BOUNDS FOR THE GENUS OF NUMERICAL SEMIGROUPS
    Leher, Eli
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 827 - 834
  • [37] ON THE FROBENIUS PROBLEM OF NUMERICAL SEMIGROUPS
    Leher, Eli
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 639 - 649
  • [38] Generalized perfect numerical semigroups
    Zmmo, Mohammad
    Tutas, Nesrin
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (01) : 150 - 162
  • [39] On Weierstrass Semigroups of Some Triples on Norm-Trace Curves
    Matthews, Gretchen L.
    CODING AND CRYPTOLOGY, PROCEEDINGS, 2009, 5557 : 146 - 156
  • [40] Weierstrass Semigroups Satisfying MP Equalities and Curves on Toric Surfaces
    Kawaguchi, Ryo
    Komeda, Jiryo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (01): : 107 - 123