Non-K3 Weierstrass numerical semigroups

被引:0
|
作者
Komeda, Jiryo [1 ]
Mase, Makiko [2 ]
机构
[1] Kanagawa Inst Technol, Ctr Basic Educ & Integrated Learning, Dept Math, Atsugi, Kanagawa 2430292, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
Weierstrass semigroups; Numerical semigroups; Double covers of curves; Non-K3 numerical semigroups; DOUBLE COVERINGS; CURVES; POINTS; GENUS;
D O I
10.1007/s00233-024-10406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the result of Reid (J Lond Math Soc 13:454-458, 1976), namely, we prove that a curve of genus >= g2+4g+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqq g<^>2+4g+6$$\end{document} having a double cover of a hyperelliptic curve of genus g >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\geqq 2$$\end{document} does not lie as a non-singular curve on any K3 surface. Applying this result we construct non-K3 Weierstrass numerical semigroups. A numerical semigroup H is said to be Weierstrass if there exists a pointed non-singular curve (C, P) such that H consists of non-negative integers which are the pole orders at P of a rational function on C having a pole only at P. We call the numerical semigroup K3 if we can take the curve C as a curve on some K3 surface. A non-K3 numerical semigroup means that it cannot be attained by a pointed non-singular curve on any K3 surface. We also give infinite sequences of non-K3 Weierstrass numerical semigroups.
引用
收藏
页码:221 / 257
页数:37
相关论文
共 50 条
  • [21] THE SIGMA FUNCTION FOR WEIERSTRASS SEMIGROUPS 3, 7, 8 AND 6, 13, 14, 15, 16
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (11)
  • [22] On Weierstrass semigroups of double coverings of hyperelliptic curves
    Oliveira, Gilvan
    Pimentel, Francisco L. R.
    SEMIGROUP FORUM, 2015, 90 (03) : 721 - 730
  • [23] On Weierstrass semigroups and sets: a review with new results
    Cícero Carvalho
    Takao Kato
    Geometriae Dedicata, 2009, 139 : 195 - 210
  • [24] Weierstrass semigroups on the Giulietti-Korchmaros curve
    Beelen, Peter
    Montanucci, Maria
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 : 10 - 29
  • [25] Weierstrass semigroups at every point of the Suzuki curve
    Bartoli, Daniele
    Montanucci, Maria
    Zini, Giovanni
    ACTA ARITHMETICA, 2021, 197 (01) : 1 - 20
  • [26] On the weight of numerical semigroups
    Oliveira, G.
    Torres, F.
    Villanueva, J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (11) : 1955 - 1961
  • [27] Sparse Numerical Semigroups
    Munuera, C.
    Torres, F.
    Villanueva, J.
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 23 - +
  • [28] On extensions of a double covering of plane curves and Weierstrass semigroups of the double covering type
    Komeda, Jiryo
    Watanabe, Kenta
    SEMIGROUP FORUM, 2015, 91 (02) : 517 - 523
  • [29] WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS OF PLANE CURVES OF DEGREE SIX WITH TOTAL FLEXES
    Kim, Seon Jeong
    Komeda, Jiryo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 611 - 624
  • [30] K-weight bounds for γ-hyperelliptic semigroups
    Cotterill, Ethan
    Martins, Renato Vidal
    SEMIGROUP FORUM, 2019, 99 (01) : 198 - 203