Non-K3 Weierstrass numerical semigroups

被引:0
|
作者
Komeda, Jiryo [1 ]
Mase, Makiko [2 ]
机构
[1] Kanagawa Inst Technol, Ctr Basic Educ & Integrated Learning, Dept Math, Atsugi, Kanagawa 2430292, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
Weierstrass semigroups; Numerical semigroups; Double covers of curves; Non-K3 numerical semigroups; DOUBLE COVERINGS; CURVES; POINTS; GENUS;
D O I
10.1007/s00233-024-10406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the result of Reid (J Lond Math Soc 13:454-458, 1976), namely, we prove that a curve of genus >= g2+4g+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqq g<^>2+4g+6$$\end{document} having a double cover of a hyperelliptic curve of genus g >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\geqq 2$$\end{document} does not lie as a non-singular curve on any K3 surface. Applying this result we construct non-K3 Weierstrass numerical semigroups. A numerical semigroup H is said to be Weierstrass if there exists a pointed non-singular curve (C, P) such that H consists of non-negative integers which are the pole orders at P of a rational function on C having a pole only at P. We call the numerical semigroup K3 if we can take the curve C as a curve on some K3 surface. A non-K3 numerical semigroup means that it cannot be attained by a pointed non-singular curve on any K3 surface. We also give infinite sequences of non-K3 Weierstrass numerical semigroups.
引用
收藏
页码:221 / 257
页数:37
相关论文
共 50 条
  • [1] Non-K3 Weierstrass numerical semigroups
    Jiryo Komeda
    Makiko Mase
    Semigroup Forum, 2024, 108 : 145 - 164
  • [2] Infinite sequences of almost symmetric non-Weierstrass numerical semigroups
    Komeda, Jiryo
    SEMIGROUP FORUM, 2021, 103 (03) : 935 - 952
  • [3] REALIZING NUMERICAL SEMIGROUPS AS WEIERSTRASS SEMIGROUPS: A COMPUTATIONAL APPROACH
    Pimentel, Francisco L. R.
    Oliveira, Gilvan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2006, 6 (03): : 445 - 454
  • [4] On the structure of numerical sparse semigroups and applications to Weierstrass points
    Contiero, Andre
    Moreira, Carlos Gustavo T. de A.
    Veloso, Paula M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) : 3946 - 3957
  • [5] On -Hyperelliptic Weierstrass Semigroups of Genus and
    Komeda, Jiryo
    Ohbuch, Akira
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 209 - 218
  • [6] On Weierstrass semigroups and sets: a review with new results
    Carvalho, Cicero
    Kato, Takao
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 195 - 210
  • [7] Weierstrass semigroups on Castelnuovo curves
    Pflueger, Nathan
    JOURNAL OF ALGEBRA, 2021, 582 : 117 - 135
  • [8] Counting numerical semigroups by genus and even gaps
    Bernardini, Matheus
    Torres, Fernando
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2853 - 2863
  • [9] On Weierstrass semigroups of double covering of genus two curves
    Oliveira, Gilvan
    Pimentel, Francisco L. R.
    SEMIGROUP FORUM, 2008, 77 (02) : 152 - 162
  • [10] On Weierstrass semigroups of double covering of genus two curves
    Gilvan Oliveira
    Francisco L. R. Pimentel
    Semigroup Forum, 2008, 77 : 152 - 162